Question
Question: Write the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\]....
Write the value of tan(2tan−151).
Solution
Hint: In the given expression first expand the 2tan−151using the 2tan−1xformulae take the value of x=51and substitute it in the formulae and we know that tan(tan−1θ)=θ. By using these two formulas we will get the value of tan(2tan−151).
Complete step-by-step answer:
Given that we have to find the value of tan(2tan−151)
We know that the formula for 2tan−1xis given by 2tan−1x=tan−1(1−x22x)
Here the value of x is x=51
Now apply the above formula to the expression we will get
=tantan−11−(51)22×51. . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
=tantan−11−25152 . . . . . . . . . . . . . . . . . . . . . . . . . . .. .(2)
=tantan−1252452. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .(3)
=tan[tan−1(52×2425)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
=tan[tan−1(125)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5)
=125
So we get the value of \tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$$$$=\dfrac{5}{12}.
Note: The inverse function tan exists for every real number. For every x∈(−∞,∞)it is called the inverse tangent function or arc tangent function. So if tan−1x=θ then tanθ=x. The domain of tan−1xis set of all real numbers or else denoted by R and range is (−2π,2π).