Solveeit Logo

Question

Question: Write the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\]....

Write the value of tan(2tan115)\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right).

Explanation

Solution

Hint: In the given expression first expand the 2tan1152{{\tan }^{-1}}\dfrac{1}{5}using the 2tan1x2{{\tan }^{-1}}xformulae take the value of x=15x=\dfrac{1}{5}and substitute it in the formulae and we know that tan(tan1θ)=θ\tan \left( {{\tan }^{-1}}\theta \right)=\theta . By using these two formulas we will get the value of tan(2tan115)\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right).

Complete step-by-step answer:

Given that we have to find the value of tan(2tan115)\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)
We know that the formula for 2tan1x2{{\tan }^{-1}}xis given by 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)
Here the value of xx is x=15x=\dfrac{1}{5}
Now apply the above formula to the expression we will get
=tan[tan1(2×151(15)2)]=\tan \left[ {{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{5}}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \right]. . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
=tan[tan1(251125)]=\tan \left[ {{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right) \right] . . . . . . . . . . . . . . . . . . . . . . . . . . .. .(2)
=tan[tan1(252425)]=\tan \left[ {{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{24}{25}} \right) \right]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .(3)
=tan[tan1(25×2524)]=\tan \left[ {{\tan }^{-1}}\left( \dfrac{2}{5}\times \dfrac{25}{24} \right) \right] . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
=tan[tan1(512)]=\tan \left[ {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5)
=512=\dfrac{5}{12}
So we get the value of \tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)$$$$=\dfrac{5}{12}.

Note: The inverse function tan exists for every real number. For every x(,)x\in \left( -\infty ,\infty \right)it is called the inverse tangent function or arc tangent function. So if tan1x=θ{{\tan }^{-1}}x=\theta then tanθ=x\tan \theta =x. The domain of tan1x{{\tan }^{-1}}xis set of all real numbers or else denoted by R and range is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right).