Solveeit Logo

Question

Question: Write the value of \[\sin (45^\circ + \theta ) - \cos (45^\circ - \theta )\]...

Write the value of sin(45+θ)cos(45θ)\sin (45^\circ + \theta ) - \cos (45^\circ - \theta )

Explanation

Solution

Hint : First of all, we will observe the given expression and will apply the identities accordingly. After applying the identities, simplify and place the values for the angle 4545^\circ and then simplify for the resultant value.

Complete step-by-step answer :
Take the given expression –
sin(45+θ)cos(45θ)\sin (45^\circ + \theta ) - \cos (45^\circ - \theta )
We can observe that we can apply the standard general formula for sin(α+β)=sinαcosβ+cosαsinβ\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta and other identity as cos(αβ)=cosαcosβ+sinαsinβ\cos (\alpha - \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta in the above expression.
=[sin45cosθ+cos45sinθ][cos45cosθ+sin45sinθ]= [\sin 45^\circ \cos \theta + \cos 45^\circ \sin \theta ] - [\cos 45^\circ \cos \theta + \sin 45^\circ \sin \theta ]
Remember when there is a negative sign outside the bracket, the sign of all the terms inside the bracket also changes. A positive term becomes negative and vice versa.
=[sin45cosθ+cos45sinθcos45cosθsin45sinθ]= [\sin 45^\circ \cos \theta + \cos 45^\circ \sin \theta - \cos 45^\circ \cos \theta - \sin 45^\circ \sin \theta ]
Place the values of sine and cosine angles in the above equation, as we know that sin45=cos45=12\sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}
=[12cosθ+12sinθ12cosθ12sinθ]= [\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta - \dfrac{1}{{\sqrt 2 }}\cos \theta - \dfrac{1}{{\sqrt 2 }}\sin \theta ]
Take out common multiples from all the terms in the above expression-
=12[cosθ+sinθcosθsinθ]= \dfrac{1}{{\sqrt 2 }}[\cos \theta + \sin \theta - \cos \theta - \sin \theta ]
Make the pairs of the like terms in the above expression –
=12[cosθcosθ+sinθsinθ]= \dfrac{1}{{\sqrt 2 }}[\underline {\cos \theta - \cos \theta } + \underline {\sin \theta - \sin \theta } ]
The terms with equal values and opposite sign cancel each other.
=12[0]= \dfrac{1}{{\sqrt 2 }}[0]
Anything multiplied with zero, gives the resultant value as the zero.
=0= 0
Hence, the value of sin(45+θ)cos(45θ)=0\sin (45^\circ + \theta ) - \cos (45^\circ - \theta ) = 0
So, the correct answer is “0”.

Note : Remember the All STC rule, it is also known as ASTC rule in the geometry. It states that all the trigonometric ratios in the first quadrant ( 0  to 900^\circ \;{\text{to 90}}^\circ ) are positive, sine and cosec are positive in the second quadrant ( 90 to 18090^\circ {\text{ to 180}}^\circ ), tan and cot are positive in the third quadrant ( 180  to 270180^\circ \;{\text{to 270}}^\circ ) and sin and cosec are positive in the fourth quadrant ( 270 to 360270^\circ {\text{ to 360}}^\circ ).