Solveeit Logo

Question

Question: Write the value of \({{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \r...

Write the value of sin1(13)cos1(13){{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right).

Explanation

Solution

Hint:We will apply the basic identity which is used in inverse trigonometric functions. This formula is given by sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}. Because of this we will find the value of cos1(13){{\cos }^{-1}}\left( -\dfrac{1}{3} \right) in the expression sin1(13)cos1(13){{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right).

Complete step-by-step answer:
We will consider the expression sin1(13)cos1(13)...(i){{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)...(i).
Now, to solve this expression we need to use the basic identity of inverse trigonometric functions. This is given by sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}. This can also be written as cos1x=π2sin1x{{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x by placing the inverse sign term to the right side of the equation. In this formula we will substitute the value of x as 13-\dfrac{1}{3}. Therefore, we have cos1(13)=π2sin1(13){{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( -\dfrac{1}{3} \right).
Now, we will substitute the value of cos1(13){{\cos }^{-1}}\left( -\dfrac{1}{3} \right) in the expression (i). Thus, our expression is converted into a new expression which is given by sin1(13)cos1(13)=sin1(13)(π2sin1(13)){{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\left( \dfrac{\pi }{2}-{{\sin }^{-1}}\left( -\dfrac{1}{3} \right) \right).
After multiplying the minus sign in the equation we will get sin1(13)cos1(13)=sin1(13)π2+sin1(13){{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right).
At this step we will use the formula which is given by sin(x)=sin(x)\sin \left( -x \right)=-\sin \left( x \right) where x can be any integer.
Therefore, now we after substituting x as 13-\dfrac{1}{3} again we will have sin(13)=sin(13)\sin \left( -\dfrac{1}{3} \right)=-\sin \left( \dfrac{1}{3} \right).
Now, we will substitute the value sin(13)=sin(13)\sin \left( -\dfrac{1}{3} \right)=-\sin \left( \dfrac{1}{3} \right) in sin1(13)cos1(13)=sin1(13)π2+sin1(13){{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right). Therefore, we get
sin1(13)cos1(13)=sin1(13)π2+sin1(13) sin1(13)cos1(13)=sin1(13)π2+(sin1(13)) sin1(13)cos1(13)=sin1(13)π2sin1(13) \begin{aligned} & {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+\left( -{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \\\ \end{aligned}
Now we will cancel both inverse sine terms which are in the right side of the equation with negative and positive sign. This results into
sin1(13)cos1(13)=sin1(13)π2sin1(13) sin1(13)cos1(13)=π2 \begin{aligned} & {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=-\dfrac{\pi }{2} \\\ \end{aligned}
Thus, the required value of the expression sin1(13)cos1(13)=π2{{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=-\dfrac{\pi }{2}.

Note: We should always keep this in mind that whenever we take any term to the either side of the equation we have to take care that it should always be converted into its opposite sign. For example in this question we have taken the inverse sine term to the right side of the expression and we have changed the positive sign to the negative sign and then pursued it with the formula.