Solveeit Logo

Question

Question: Write the value of \({{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)\) ....

Write the value of cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) .

Explanation

Solution

Hint: For solving this question first, we will go through some important aspects like domain and range of the inverse trigonometric function y=cos1xy={{\cos }^{-1}}x . First, we will use one of the basic formula of the trigonometric ratio to write cos7π6=32\cos \dfrac{7\pi }{6}=-\dfrac{\sqrt{3}}{2} in the given term. After that, we will use one of the basic formula of inverse trigonometric functions, i.e. cos1(32)=5π6{{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\dfrac{5\pi }{6} for giving the final answer for the question correctly.

Complete step-by-step solution -
Given:
We have to find the value of the following term:
cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)
Now, before we proceed we should know about the inverse trigonometric function y=cos1xy={{\cos }^{-1}}x . For more clarity look at the figure given below:

In the above figure, the plot y=f(x)=cos1xy=f\left( x \right)={{\cos }^{-1}}x is shown. And we should know that the function y=cos1xy={{\cos }^{-1}}x is defined for x[1,1]x\in \left[ -1,1 \right] and its range is y[0,π]y\in \left[ 0,\pi \right] then, yy is the principal value of cos1x{{\cos }^{-1}}x .
Now, we will use the above concept for giving the correct value of cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) .
Now, before we proceed further we should know the following formulas:
cos7π6=cos(π+π6)=cosπ6=32..................(1) cos1(32)=π6...........(2) cos1(x)=πcos1x (if 0x1)..............(3) \begin{aligned} & \cos \dfrac{7\pi }{6}=\cos \left( \pi +\dfrac{\pi }{6} \right)=-\cos \dfrac{\pi }{6}=-\dfrac{\sqrt{3}}{2}..................\left( 1 \right) \\\ & {{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}...........\left( 2 \right) \\\ & {{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x\text{ }\left( \text{if 0}\le \text{x}\le \text{1} \right)..............\left( 3 \right) \\\ \end{aligned}
Now, we will use the above two formulas to solve this question.
We have, cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) .
Now, we will use the formula from the equation (1) to write cos7π6=32\cos \dfrac{7\pi }{6}=-\dfrac{\sqrt{3}}{2} in the term cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) . Then,
cos1(cos7π6) cos1(32) \begin{aligned} & {{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \\\ \end{aligned}
Now, as 0<32<10<\dfrac{\sqrt{3}}{2}<1 so, we will use the formula from the equation (3) to write cos1(32)=πcos1(32){{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) in the above line. Then,
cos1(32) πcos1(32) \begin{aligned} & {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \\\ & \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write cos1(32)=π6{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6} in the above equation. Then,
πcos1(32) ππ6 5π6 \begin{aligned} & \pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \\\ & \Rightarrow \pi -\dfrac{\pi }{6} \\\ & \Rightarrow \dfrac{5\pi }{6} \\\ \end{aligned}
Now, from the above result, we conclude that the value of the expression cos1(cos7π6){{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) will be equal to 5π6\dfrac{5\pi }{6} . Then,
cos1(cos7π6)=5π6{{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}
Now, as it is evident that 5π6\dfrac{5\pi }{6} lies in the range of the function y=cos1xy={{\cos }^{-1}}x so, value of cos1(cos7π6)=5π6{{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6} .
Thus, cos1(cos7π6)=5π6{{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6} .

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. And we should avoid writing cos1(cos7π6)=7π6{{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{7\pi }{6} directly and use the basic concepts of domain and range of the inverse trigonometric function y=cos1xy={{\cos }^{-1}}x correctly. Moreover, as we know that, cos5π6=32\cos \dfrac{5\pi }{6}=-\dfrac{\sqrt{3}}{2} and 0<5π6<π0<\dfrac{5\pi }{6}<\pi so, we can directly write cos1(32)=5π6{{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\dfrac{5\pi }{6} by the formula cos1(cosθ)=θ{{\cos }^{-1}}\left( \cos \theta \right)=\theta if θ[0,π]\theta \in \left[ 0,\pi \right] . And after giving the final answer, we should check for the validity of our answer by checking whether it lies in the range of the function y=cos1xy={{\cos }^{-1}}x.