Solveeit Logo

Question

Question: Write the value \(\left| \begin{matrix} x+y & y+z & z+x \\\ z & x & y \\\ -3 & -3 & -3 \\\ \...

Write the value x+yy+zz+x zxy 333 \left| \begin{matrix} x+y & y+z & z+x \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|

Explanation

Solution

Now we know using elementary row and column transformation does not change the value of determinant. Hence we can use row transformations to simplify this determinant. Now first we will R1=R1+R3{{R}_{1}}={{R}_{1}}+{{R}_{3}} . This will give us a determinant in which the 1st row has the same elements. Hence we will take x + y + z common from the determinant. Now we will again use Row transformation R1R1+13R3{{R}_{1}}\to {{R}_{1}}+\dfrac{1}{3}{{R}_{3}} and then solve the determinant.

Complete step-by-step answer:
Now consider the determinant x+yy+zz+x zxy 333 \left| \begin{matrix} x+y & y+z & z+x \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|
Now we can use elementary row transformation to solve this determinant.
Row transformation can be adding one row to a row or adding multiple of a row to any row.
Here we will add row 2 to row 1.
Now here row transformation does not change the value of determinant.
Hence we can use them easily to simplify the determinant
Hence using R1R1+R2{{R}_{1}}\to {{R}_{1}}+{{R}_{2}} . We get the determinant as
x+y+zy+z+xz+x+y zxy 333 \left| \begin{matrix} x+y+z & y+z+x & z+x+y \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|
Now rearranging the terms in row 1 we get.
x+y+zx+y+zx+y+z zxy 333 \left| \begin{matrix} x+y+z & x+y+z & x+y+z \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|
Now we can see that all the terms in row 1 are equal. Now we can take this common and hence take it out of determinant.

1 & 1 & 1 \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|$$ Now again using the transformation ${{R}_{1}}\to {{R}_{1}}+\dfrac{1}{3}{{R}_{3}}$ . we get the determinant as $$\left( x+y+z \right)\left| \begin{matrix} 0 & 0 & 0 \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|$$ Now let us open the determinant, Hence we get (x + y + z) [0(-3x – (- 3y)) – 0(- 3z - (-3y)) + 0(-3z – (-3y))]. = (x + y + z)[0 – 0 + 0] =(x + y + z)[0] =0 Hence we get the value of the determinant is 0. **Note:** We have a property of determinant which says if any two rows or columns are the same then the value of the determinant is equal to 0. Hence if we apply row transformation $${{R}_{1}}\to {{R}_{1}}-4{{R}_{1}}$$ to the determinant $$\left| \begin{matrix} 1 & 1 & 1 \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|$$ we will get $$\left| \begin{matrix} -3 & -3 & -3 \\\ z & x & y \\\ -3 & -3 & -3 \\\ \end{matrix} \right|$$ and hence the value of determinant is 0.