Solveeit Logo

Question

Question: Write the simplest form of \[\] \[ta{n^{ - 1}}\left( {\dfrac{{cosx - sinx}}{{cosx + sinx}}} \right),...

Write the simplest form of $$$$ tan1(cosxsinxcosx+sinx),0<x<2πta{n^{ - 1}}\left( {\dfrac{{cosx - sinx}}{{cosx + sinx}}} \right),0 < x < 2\pi .

Explanation

Solution

Hint : To write the simplest form of the given trigonometric expression firstly convert the sinx and cosx in terms of tanx by taking cosx from numerator and denominator. Once it gets converted into the tanx just write tan45 in place of 1 such that we will get the whole term as tan of some angle.

Complete step-by-step answer :
Given:
tan1(cosxsinxcosx+sinx)ta{n^{ - 1}}\left( {\dfrac{{cosx - sinx}}{{cosx + sinx}}} \right)
Taking cosxcosx common from numerator and denominator
We get,
=tan1(1sinxcosx1+sinxcosx)= {\tan ^{ - 1}}\left( {\dfrac{{1 - \dfrac{{sinx}}{{cosx}}}}{{1 + \dfrac{{sinx}}{{cosx}}}}} \right)
on writing tanxtanx in place of sinxcosx\dfrac{{sinx}}{{cosx}}
we get,
=tan1(1tanx1+tanx)= ta{n^{ - 1}}\left( {\dfrac{{1 - tanx}}{{1 + tanx}}} \right)
now replacing 1 as   tan45\;tan45 =tan1(tan45tanx1tan45×tanx) = {\tan ^{ - 1}}\left( {\dfrac{{tan45 - tan x}}{{1 - tan 45\times tan x}}} \right)
=tan1(tan45tanx1tan45×tanx)= {\tan ^{ - 1}}\left( {\dfrac{{tan45 - tan x}}{{1 - tan 45\times tan x}}} \right)
now by using tan(AB)tan\left( {A - B} \right) formula we can write
=tan1[tan(45x)]= ta{n^{ - 1}}\left[ {tan(45 - x)} \right]
As we can cancel out the tan from above result
We get,
45x45 - x
Hence the value of
tan1(cosxsinxcosx+sinx)=π4xta{n^{ - 1}}\left( {\dfrac{{cosx - sinx}}{{cosx + sinx}}} \right) = \dfrac{\pi }{4} - x
Or we can say π4x\dfrac{\pi }{4} - x is the simplest form of the given inverse trigonometric function.
So, the correct answer is “π4x\dfrac{\pi }{4} - x ”.

Note : Here we have taken cosxcosx common from the numerator and denominator in place of cosxcosx we can also take common sinxsinx in that way we also can write the given trigonometric expression in simplest form.