Solveeit Logo

Question

Question: Write the relationship between- (i) kgf and newton (ii) gf and dyne...

Write the relationship between-
(i) kgf and newton
(ii) gf and dyne

Explanation

Solution

All the given units are units of force. Kgf is the gravitational metric unit, and Newton is S.I. unit of force, gf is a metric unit of force, and dyne is the unit of force in a centimeter-gram-second system. We will be establishing the relationship between all the given units by converting them into the S.I. unit system.

Complete step by step answer:
(i) One kilogram-force (kgf) is the value of force due to gravity on a body of mass 1kg1{\rm{ kg}}. Mathematically, we can write:
1kgf=mg1{\rm{ kgf}} = mg……(1)
Here m is the mass of the body, and g is the acceleration due to gravity.
We know that the value of acceleration due to gravity is 9.81m/ms2s29.81{\rm{ }}{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}}.
Substitute 9.81m/ms2s29.81{\rm{ }}{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}} for g and 1kg1{\rm{ kg}} for m in equation (1).

1kgf=(1kg)(9.81m/ms2s2) 1kgf=9.81kgm/kgms2×(Nkgm/ms2s2)s2×(Nkgm/ms2s2) 1kgf=9.81N1{\rm{ kgf}} = \left( {1{\rm{ kg}}} \right)\left( {9.81{\rm{ }}{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}}} \right)\\\ \Rightarrow 1{\rm{ kgf}} = 9.81{{{\rm{ kg}} \cdot {\rm{m}}} {\left/ {\vphantom {{{\rm{ kg}} \cdot {\rm{m}}} {{{\rm{s}}^2} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}}}}} \right)}}} \right. } {{{\rm{s}}^2} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}}}}} \right)}}\\\ \Rightarrow 1{\rm{ kgf}} = 9.81{\rm{ N}}

(ii) Gram force (gf) is the value of force due to gravity on a body of mass 1g1{\rm{ g}}.
1gf=m1g1{\rm{ gf}} = {m_1}g
Here m1{m_1} is the mass of the body.
Substitute 9.81m/ms2s29.81{\rm{ }}{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}} for g and 1g1{\rm{ g}} for m1{m_1} in the above expression.

1{\rm{ gf}} = \left( {1{\rm{ g}}} \right)\left( {9.81{\rm{ }}{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}}} \right)\\\ \Rightarrow 1{\rm{ gf}} = 9.81{\rm{ g}} \cdot {{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}} \times \left( {\dfrac{{{\rm{kg}}}}{{1000{\rm{ g}}}}} \right)\\\ \Rightarrow 1{\rm{ gf}} = 9.81 \times {10^{ - 3}}{\rm{kg}} \cdot {{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right. } {{{\rm{s}}^2}}}}}} \right)\\\ \Rightarrow 1{\rm{ gf}} = 981 \times {10^{ - 5}}{\rm{ N}}$$……(2) We know that the value of dyne in terms of newton is given as: $$1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}$$ Substitute $$1{\rm{ dyn}}$$ for $${10^{ - 5}}{\rm{ N}}$$ in equation (2).

1{\rm{ gf}} = 981 \times \left( {1{\rm{ dyn}}} \right)\\
\therefore 1{\rm{ gf}} = 981{\rm{ dyn}}

**Therefore, the relation between one kgf is equal to $$9.81{\rm{ N}}$$ , and one gf is equal to $$981{\rm{ dyn}}$$.** **Note:** It would be better if we remember converting units of force into different units of units.There are various systems of units such as the centimetre-gram-second (CGS) system, foot-pound-second (FPS) system, and system Internationale (S.I.) system. But the S.I. the unit system is mostly followed by mathematicians and scientists.