Solveeit Logo

Question

Question: Write the principal value of \[\left[ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}...

Write the principal value of [tan1(1)+cos1(12)]\left[ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) \right]

Explanation

Solution

Hint: To solve this type of problems we have to know the inverse trigonometric functions like cos1(cosθ){{\cos }^{-1}}(\cos \theta ) and tan1(tanθ){{\tan }^{-1}}(\tan \theta ). By applying formulas and writing the values of trigonometric functions we will get the values in the range of a function.

Complete step-by-step answer:

Now writing the expression
[tan1(1)+cos1(12)]\left[ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) \right] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that
cos60=12=cosπ3\cos {{60}^{\circ }}=\dfrac{1}{2}=\cos \dfrac{\pi }{3}
tan45=1=π4\tan {{45}^{\circ }}=1=\dfrac{\pi }{4}
cos1(θ)=πcos1θ{{\cos }^{-1}}(-\theta )=\pi -{{\cos }^{-1}}\theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
Now rewriting the expression (1) we get
[tan1(tanπ4)+πcos1(cosπ3)]\left[ {{\tan }^{-1}}(\tan \dfrac{\pi }{4})+\pi -{{\cos }^{-1}}\left( \cos \dfrac{\pi }{3} \right) \right]
We know that
cos1(cosθ)=θ forallθ[0,π]{{\cos }^{-1}}(\cos \theta )=\theta \ for all \theta \in \left[ 0,\pi \right]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (b)
tan1(tanθ)=θ forallθ(π2,π2){{\tan }^{-1}}(\tan \theta )=\theta \ for all \theta \in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) . . . . . . . . . . . . . . . . . . (c)
Now from (b) and (c) further writing the expression we get,
= [π4+ππ3]\left[ \dfrac{\pi }{4}+\pi -\dfrac{\pi }{3} \right]
= [11π12]\left[ \dfrac{11\pi }{12} \right]

Note: The interval [0,π]\left[ 0,\pi \right]as shown in (b) is the range for the inverse trigonometric function cos1θ{{\cos }^{-1}}\theta . From (a) the range of cos1θ{{\cos }^{-1}}\theta is [0,π]\left[ 0,\pi \right]we have to use that expression of (a) because the range of cos1θ{{\cos }^{-1}}\theta is [0,π]\left[ 0,\pi \right]. The range of tan1θ{{\tan }^{-1}}\theta is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right). Take care while doing calculations.