Question
Question: Write the principal value of \[\left[ {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}...
Write the principal value of [tan−1(1)+cos−1(−21)]
Solution
Hint: To solve this type of problems we have to know the inverse trigonometric functions like cos−1(cosθ) and tan−1(tanθ). By applying formulas and writing the values of trigonometric functions we will get the values in the range of a function.
Complete step-by-step answer:
Now writing the expression
[tan−1(1)+cos−1(−21)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that
cos60∘=21=cos3π
tan45∘=1=4π
cos−1(−θ)=π−cos−1θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
Now rewriting the expression (1) we get
[tan−1(tan4π)+π−cos−1(cos3π)]
We know that
cos−1(cosθ)=θ forallθ∈[0,π]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (b)
tan−1(tanθ)=θ forallθ∈(−2π,2π) . . . . . . . . . . . . . . . . . . (c)
Now from (b) and (c) further writing the expression we get,
= [4π+π−3π]
= [1211π]
Note: The interval [0,π]as shown in (b) is the range for the inverse trigonometric function cos−1θ. From (a) the range of cos−1θis [0,π]we have to use that expression of (a) because the range of cos−1θis [0,π]. The range of tan−1θis (−2π,2π). Take care while doing calculations.