Question
Question: Write the principal value of \[\left[ {{\cos }^{-1}}\dfrac{\sqrt{3}}{2}+{{\cos }^{-1}}\left( -\dfrac...
Write the principal value of [cos−123+cos−1(−21)]
Solution
Hint: To solve this type of problems we have to know the inverse trigonometric functions like cos−1(cosθ) and sin−1(sinθ). By applying formulas and writing the values of trigonometric functions we will get the values in the range of a function. Use cos−1(−θ)=π−cos−1θ.
Complete step-by-step answer:
Now writing the expression
[cos−123+cos−1(−21)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that cos30∘=23=cos6π
cos60∘=21=cos3π
cos−1(−θ)=π−cos−1θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
Now rewriting the expression (1) we get
[cos−1(cos6π)+π−cos−1(cos3π)]
We know that
cos−1(cosθ)=θ∀θ∈[0,π]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (b)
Now from (b) further writing the expression we get,
= [6π+π−3π]
= [65π]
Note: The interval [0,π] as shown in (b) is the range for the inverse trigonometric function cos−1θ. cos−1(cosθ)=θ∀θ∈[0,π] this means the value becomes θ only in the given range. From (a) the range of cos−1θ is [0,π] we have to use that expression of (a) because the range of cos−1θ is [0,π]. Take care while doing calculations.