Solveeit Logo

Question

Question: Write the principal value of \[\left[ {{\cos }^{-1}}\dfrac{\sqrt{3}}{2}+{{\cos }^{-1}}\left( -\dfrac...

Write the principal value of [cos132+cos1(12)]\left[ {{\cos }^{-1}}\dfrac{\sqrt{3}}{2}+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) \right]

Explanation

Solution

Hint: To solve this type of problems we have to know the inverse trigonometric functions like cos1(cosθ){{\cos }^{-1}}(\cos \theta ) and sin1(sinθ){{\sin }^{-1}}(\sin \theta ). By applying formulas and writing the values of trigonometric functions we will get the values in the range of a function. Use cos1(θ)=πcos1θ{{\cos }^{-1}}(-\theta )=\pi -{{\cos }^{-1}}\theta .

Complete step-by-step answer:

Now writing the expression
[cos132+cos1(12)]\left[ {{\cos }^{-1}}\dfrac{\sqrt{3}}{2}+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right) \right] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that cos30=32=cosπ6\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}=\cos \dfrac{\pi }{6}
cos60=12=cosπ3\cos {{60}^{\circ }}=\dfrac{1}{2}=\cos \dfrac{\pi }{3}
cos1(θ)=πcos1θ{{\cos }^{-1}}(-\theta )=\pi -{{\cos }^{-1}}\theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
Now rewriting the expression (1) we get
[cos1(cosπ6)+πcos1(cosπ3)]\left[ {{\cos }^{-1}}\left( \cos \dfrac{\pi }{6} \right)+\pi -{{\cos }^{-1}}\left( \cos \dfrac{\pi }{3} \right) \right]
We know that
cos1(cosθ)=θθ[0,π]{{\cos }^{-1}}(\cos \theta )=\theta \forall \theta \in \left[ 0,\pi \right]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (b)
Now from (b) further writing the expression we get,
= [π6+ππ3]\left[ \dfrac{\pi }{6}+\pi -\dfrac{\pi }{3} \right]
= [5π6]\left[ \dfrac{5\pi }{6} \right]

Note: The interval [0,π]\left[ 0,\pi \right] as shown in (b) is the range for the inverse trigonometric function cos1θ{{\cos }^{-1}}\theta . cos1(cosθ)=θθ[0,π]{{\cos }^{-1}}(\cos \theta )=\theta \forall \theta \in \left[ 0,\pi \right] this means the value becomes θ\theta only in the given range. From (a) the range of cos1θ{{\cos }^{-1}}\theta is [0,π]\left[ 0,\pi \right] we have to use that expression of (a) because the range of cos1θ{{\cos }^{-1}}\theta is [0,π]\left[ 0,\pi \right]. Take care while doing calculations.