Solveeit Logo

Question

Question: Write the Maximum and Minimum values of \[\cos (\cos x)\]....

Write the Maximum and Minimum values of cos(cosx)\cos (\cos x).

Explanation

Solution

To solve this problem first we will find differentiation then we will find extreme points by putting differentiation is equal to 0. Then we will find second order derivatives at extreme points and we will check conditions for maxima and minima. Then we will find the maximum and minimum value of a given function.

Complete step-by-step answer:

Let y=cos(cosx)y=\cos (\cos x)

Differentiation on both sides with respect to x

dydx=sin(cosx)sinx\dfrac{dy}{dx}=-\sin (\cos x)\cdot -\sin x

dydx=sin(cosx)sinx\dfrac{dy}{dx}=\sin (\cos x)\cdot \sin x

To get extreme value ,

dydx=0\dfrac{dy}{dx}=0

sin(cosx)sinx=0\therefore \sin (\cos x)\sin x=0

If the product of two numbers is zero, then either of them will be equal to zero.

Case 1:

sin(cosx)=0\sin (\cos x)=0

cosx=0\cos x=0

x=π2x=\dfrac{\pi }{2}

Case 2:

sinx=0\sin x=0

x=0x=0

Now on differentiating dydx=sin(cosx)sinx\dfrac{dy}{dx}=\sin (\cos x)\cdot \sin x using the product rule.

d2ydx2=cos(cosx)sinx(sinx)+sin(cosx)cosx\dfrac{d^2y}{dx^2}= \cos(\cos x)\cdot \sin x\cdot (-\sin x) + \sin (\cos x)\cdot \cos x

If x=0x=0 then,

d2ydx2=cos(cos0)sin0(sin0)+sin(cos0)cos0\dfrac{d^2y}{dx^2}= \cos(\cos 0)\cdot \sin 0\cdot (-\sin 0) + \sin (\cos 0)\cdot \cos 0

d2ydx2=0+sin(1)1\dfrac{d^2y}{dx^2}= 0 + \sin (1)\cdot 1

So from here we can say that d2ydx2\dfrac{d^2y}{dx^2} is greater than 0 at x=0.

So at x=0 we will get the minimum value of cos(cosx)\cos (\cos x).

Substitute the value of ‘x’ in the function.

If x=0x=0

y=cos(cosx)y=\cos (\cos x)

=cos(cos0)=\cos (\cos 0{}^\circ )

=cos(1)=\cos (1)

So, The minimum value of cos(cosx)\cos (\cos x) is cos1\cos 1.

Now,

If x=π2x=\dfrac{\pi }{2} then

d2ydx2=cos(cosπ2)sinπ2(sinπ2)+sin(cosπ2)cosπ2\dfrac{d^2y}{dx^2}= \cos(\cos \dfrac{\pi }{2})\cdot \sin \dfrac{\pi }{2}\cdot (-\sin \dfrac{\pi }{2}) + \sin (\cos \dfrac{\pi }{2})\cdot \cos \dfrac{\pi }{2}

d2ydx2=cos(0)1(1)+sin(0)0\dfrac{d^2y}{dx^2}= \cos(0)\cdot 1\cdot (-1) + \sin (0)\cdot 0

d2ydx2=11(1)+0\dfrac{d^2y}{dx^2}= 1\cdot 1\cdot (-1) + 0

So from here we can say that d2ydx2\dfrac{d^2y}{dx^2} is less than 0 at x=π2x=\dfrac{\pi }{2}.

So at x=π2x=\dfrac{\pi }{2} we will get the maximum value of cos(cosx)\cos (\cos x).

Substitute the value of ‘x’ in the function.

y=cos(cos(π2))y=\cos \left( \cos \left( \dfrac{\pi }{2} \right) \right)

y=cos(0)y=\cos (0)

y=1y=1

\therefore The maximum value of cos(cosx)\cos (\cos x) is cos0\cos{0}^{\circ}=1.

Note: Cosine is a decreasing function from o to π\pi. It has maximum value 1 when x=0x={{0}^{\circ }} and minimum value -1 when x=πx={\pi }. So we can also say cos(cosx)\cos (\cos x) will have a maximum value when cos(x) has value 0.