Solveeit Logo

Question

Question: Write the Maclaurin series for \(\tan ^{-1} x\)....

Write the Maclaurin series for tan1x\tan ^{-1} x.

Explanation

Solution

Hint : In this question, we need to find the Maclaurin Series for tan1x{\tan ^{ - 1}}x .For this, we will find some derivatives of tan1x{\tan ^{ - 1}}x as if f(x)=tan1xf\left( x \right) = {\tan ^{ - 1}}x then we will find the values of f(x),f(x),f(x),fiv(x),....{f'}\left( x \right),{f^{''}}\left( x \right),{f^{'''}}\left( x \right),{f^{iv}}\left( x \right),.... After that we will find out the values of f(0), f(0), f(0), f(0), fiv(x).....f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( x \right){\text{, }}..... And finally we will use the formula of Maclaurin series to evaluate our answer.
Formula of Maclaurin series is:
f(x)=f(0)+f(0)x+f(0)2!x2+f(0)3!x3+fiv(0)4!x4+......f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......

Complete step-by-step answer :
Here we are given the function as tan1x{\tan ^{ - 1}}x
i.e., f(x)=tan1xf\left( x \right) = {\tan ^{ - 1}}x
and we have to find the Maclaurin’s series for tan1x{\tan ^{ - 1}}x
Now, we know that Maclaurin series for a function f(x)f\left( x \right) is given by:
f(x)=f(0)+f(0)x+f(0)2!x2+f(0)3!x3+fiv(0)4!x4+...... f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......{\text{ }}
So, let us first evaluate the values of some of its derivatives as
f(x), f(x), f(x), fiv(x),....{f'}\left( x \right),{\text{ }}{f^{''}}\left( x \right),{\text{ }}{f^{'''}}\left( x \right),{\text{ }}{f^{iv}}\left( x \right),....
So, we have f(x)=tan1x (1)f\left( x \right) = {\tan ^{ - 1}}x{\text{ }} - - - \left( 1 \right)
Differentiating f(x)f\left( x \right) with respect to xx we get
f(x)=d(tan1x)dx{f'}\left( x \right) = \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}
As we know that, d(tan1x)dx=11+x2\dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}}
So, we have
f(x)=1(1+x2)=(1+x2)1(2){f'}\left( x \right) = \dfrac{1}{{\left( {1 + {x^2}} \right)}} = {\left( {1 + {x^2}} \right)^{ - 1}} - - - \left( 2 \right)
Again differentiating f(x){f'}\left( x \right) with respect to xx we get
f(x)=ddx((1+x2)1){f^{''}}\left( x \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)
f(x)=(1+x2)22x(3)\Rightarrow {f^{''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}}2x - - - \left( 3 \right)
Now, differentiating f(x){f^{''}}\left( x \right) with respect to xx we get,
f(x)=ddx((1+x2)22x){f^{'''}}\left( x \right) = \dfrac{d}{{dx}}\left( { - {{\left( {1 + {x^2}} \right)}^{ - 2}}2x} \right)
Using product rule i.e., d(uv)dx=ud(v)dx+vd(u)dx\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}} we get
f(x)=(1+x2)22 + 2x(2(1+x2)32x){f^{'''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}} \cdot 2{\text{ }} + {\text{ }}2x\left( {2{{\left( {1 + {x^2}} \right)}^{ - 3}} \cdot 2x} \right)
Taking common (1+x2)2{\left( {1 + {x^2}} \right)^{ - 2}} , we get
f(x)=(1+x2)2(2+8x2(1+x2)1){f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + 8{x^2}{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)
f(x)=(1+x2)2(2+8x2(1+x2))\Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + \dfrac{{8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)
On simplifying it, we get
f(x)=(1+x2)2(22x2+8x2(1+x2))\Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( {\dfrac{{ - 2 - 2{x^2} + 8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)
f(x)=(6x22)(1+x2)3 (4)\Rightarrow {f^{'''}}\left( x \right) = \left( {6{x^2} - 2} \right){\left( {1 + {x^2}} \right)^{ - 3}}{\text{ }} - - - \left( 4 \right)
Now, differentiating f(x){f^{'''}}\left( x \right) with respect to xx we get,
fiv(x)=ddx((6x22)(1+x2)3) {f^{iv}}\left( x \right) = \dfrac{d}{{dx}}\left( {\left( {6{x^2} - 2} \right){{\left( {1 + {x^2}} \right)}^{ - 3}}} \right){\text{ }}
Using product rule, we get
fiv(x)=(6x22)(3(1+x2)42x)+(1+x2)3(12x){f^{iv}}\left( x \right) = \left( {6{x^2} - 2} \right)\left( { - 3{{\left( {1 + {x^2}} \right)}^{ - 4}}2x} \right) + {\left( {1 + {x^2}} \right)^{ - 3}}\left( {12x} \right)
Taking common (1+x2)3{\left( {1 + {x^2}} \right)^{ - 3}} , we get
fiv(x)=(1+x2)3[(6x22)(6x)(1+x2)+12x]{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\left[ {\dfrac{{\left( {6{x^2} - 2} \right)\left( { - 6x} \right)}}{{\left( {1 + {x^2}} \right)}} + 12x} \right]
fiv(x)=(1+x2)3[36x3+12x+12x+12x3](1+x2)\Rightarrow {f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\dfrac{{\left[ { - 36{x^3} + 12x + 12x + 12{x^3}} \right]}}{{\left( {1 + {x^2}} \right)}}
On simplifying it, we get
fiv(x)=(1+x2)4(24x3+24x){f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 4}}\left( { - 24{x^3} + 24x} \right)
fiv(x)=24x(x21)(1+x2)4 (5)\Rightarrow {f^{iv}}\left( x \right) = - 24x\left( {{x^2} - 1} \right){\left( {1 + {x^2}} \right)^{ - 4}}{\text{ }} - - - \left( 5 \right)
and so on….
Now, we will find out the values of f(0), f(0), f(0), f(0), fiv(0),.....f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( 0 \right){\text{,}}.....
So, from equation (1)\left( 1 \right) on putting x=0x = 0 we get
f(0)=tan1(0) = 0 f\left( 0 \right) = {\tan ^{ - 1}}\left( 0 \right){\text{ = 0 }}
From equation (2)\left( 2 \right) on putting x=0x = 0 we get
f(0)=1(1+02)=(1+02)1=1{f'}\left( 0 \right) = \dfrac{1}{{\left( {1 + {0^2}} \right)}} = {\left( {1 + {0^2}} \right)^{ - 1}} = 1
Similarly, from equation (3)\left( 3 \right) on putting x=0x = 0 we get
f(0)=(1+02)22(0)=0{f^{''}}\left( 0 \right) = - {\left( {1 + {0^2}} \right)^{ - 2}}2\left( 0 \right) = 0
Now, from equation (4)\left( 4 \right) on putting x=0x = 0 we get
f(0)=(6(0)22)(1+02)3=2{f^{'''}}\left( 0 \right) = \left( {6{{\left( 0 \right)}^2} - 2} \right){\left( {1 + {0^2}} \right)^{ - 3}} = - 2
and from equation (5)\left( 5 \right) on putting x=0x = 0 we get
fiv(0)=24(0)(021)(1+02)4=0\Rightarrow {f^{iv}}\left( 0 \right) = - 24\left( 0 \right)\left( {{0^2} - 1} \right){\left( {1 + {0^2}} \right)^{ - 4}} = 0
Putting all these values in Maclaurin series, we get
tan1x=0+x(1)+x22!(0)+x33!(2)+x44!(0)+......{\tan ^{ - 1}}x = 0 + x\left( 1 \right) + \dfrac{{{x^2}}}{{2!}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}\left( { - 2} \right) + \dfrac{{{x^4}}}{{4!}}\left( 0 \right) + ......
tan1x=x2x33!+......\Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{{3!}} + ......
Now we know that,
n!=n(n1)(n2)......321n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot ......3 \cdot 2 \cdot 1
So, expanding 3!=321=63! = 3 \cdot 2 \cdot 1 = 6 we get
tan1x=x2x36+......\Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{6} + ......
tan1x=xx33+......\Rightarrow {\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......
Therefore, the Maclaurin series for tan1x{\tan ^{ - 1}}x is given as,
tan1x=xx33+......{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......
So, the correct answer is “tan1x=xx33+......{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......”.

Note : Students should take care while finding all the derivatives. Also, they should note that all even values will be equal to 00 ,so we have the Maclaurin series in odd order only as well as there is an alternative sign between the terms. Also, they can find more functions to increase the expansion.