Solveeit Logo

Question

Question: Write the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\], and hence evaluate \[\int {\...

Write the integral of x2a2\sqrt {{x^2} - {a^2}} with respect to xx, and hence evaluate x28x+7dx\int {\sqrt {{x^2} - 8x + 7} } dx.

Explanation

Solution

Here, we have to evaluate the given integral. We will use completing the square method to express the given integral in the form x2a2\sqrt {{x^2} - {a^2}} . Then, using the formula for integral of x2a2\sqrt {{x^2} - {a^2}} , we will evaluate the value of the required integral.

Formula Used: We will use the following formulas:

  1. The value of the integral of x2a2\sqrt {{x^2} - {a^2}} with respect to xx is given as x2a2dx=x2x2a2a22logx+x2a2+C\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C, where CC is a constant of integration.
  2. The square of the difference of two numbers is given by the algebraic identity (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}.

Complete step by step solution:
First, we need to write the integral of x2a2\sqrt {{x^2} - {a^2}} with respect to xx.
Now, we need to use this formula to evaluate the integral x28x+7dx\int {\sqrt {{x^2} - 8x + 7} } dx.
We will use completing the square method to express the integral x28x+7dx\int {\sqrt {{x^2} - 8x + 7} } dx in the form x2a2\sqrt {{x^2} - {a^2}} .
To complete the square, we need to add and subtract the half of the coefficient of xx.
The coefficient of xx is 8. The half of 8 is 4.
We will add and subtract the square of 4 in the expression under the root.
Therefore, the integral becomes
x28x+7dx=x28x+7+(4)2(4)2dx\Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{x^2} - 8x + 7 + {{\left( 4 \right)}^2} - {{\left( 4 \right)}^2}} } dx
Rewriting the expression, we get
x28x+7dx=(x)22(x)(4)+(4)2+7(4)2dx\Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( x \right)}^2} - 2\left( x \right)\left( 4 \right) + {{\left( 4 \right)}^2} + 7 - {{\left( 4 \right)}^2}} } dx
We will use the algebraic identity (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} to simplify the expression.
Substituting a=xa = x and b=4b = 4 in the identity, we get
(x4)2=x22(x)(4)+(4)2\Rightarrow {\left( {x - 4} \right)^2} = {x^2} - 2\left( x \right)\left( 4 \right) + {\left( 4 \right)^2}
Substituting x22(x)(4)+(4)2=(x4)2{x^2} - 2\left( x \right)\left( 4 \right) + {\left( 4 \right)^2} = {\left( {x - 4} \right)^2} in the value of the integral, we get
x28x+7dx=(x4)2+7(4)2dx\Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} + 7 - {{\left( 4 \right)}^2}} } dx
Applying the exponent on the base, we get
x28x+7dx=(x4)2+716dx\Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} + 7 - 16} } dx
Subtracting 16 from 7, we get
x28x+7dx=(x4)29dx\Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} - 9} } dx
Rewriting 9 as the square of 3, we get
x28x+7dx=(x4)232dx\Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } dx
We can observe that this integral is of the form x2a2\sqrt {{x^2} - {a^2}} .
The value of the integral of x2a2\sqrt {{x^2} - {a^2}} with respect to xx is given as x2a2dx=x2x2a2a22logx+x2a2+C\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C, where CC is a constant of integration.
Substituting x4x - 4 for xx, and 3 for aa in the formula, we get
(x4)232dx=(x4)2(x4)232322log(x4)+(x4)232+C\Rightarrow \int {\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } dx = \dfrac{{\left( {x - 4} \right)}}{2}\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} - \dfrac{{{3^2}}}{2}\log \left| {\left( {x - 4} \right) + \sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } \right| + C
Simplifying the expression, we get
x28x+7dx=x42x28x+792logx4+x28x+7+C x28x+7dx=x2x28x+742x28x+792logx4+x28x+7+C x28x+7dx=x2x28x+72x28x+792logx4+x28x+7+C\begin{array}{l} \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{{x - 4}}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\\\ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{4}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\\\ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - 2\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\end{array}
Therefore, the value of the integral x28x+7dx\int {\sqrt {{x^2} - 8x + 7} } dx is x2x28x+72x28x+792logx4+x28x+7+C\dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - 2\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C.

Note:
To complete the square, we added and subtracted the half of the coefficient of xx. This is to be done only if the coefficient of x2{x^2} is 1. If the coefficient of x2{x^2} is not 1, divide the expression such that the coefficient of x2{x^2} is 1. Then, add and subtract the half of the coefficient of xx. The number used to divide is a constant and can be taken outside the integral.