Solveeit Logo

Question

Question: Write the general form of \[(1 + \tan y)(dx - dy) + 2xdy = 0\]...

Write the general form of (1+tany)(dxdy)+2xdy=0(1 + \tan y)(dx - dy) + 2xdy = 0

Explanation

Solution

The most general form of linear differential equations of first order is dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q , where P and Q are functions of x.
To solve such an equation multiply both sides by ePdx{e^{\smallint Pdx}} . Then the solution of this equation will be
yePdx=QePdxdx+cy{e^{\smallint Pdx}} = \smallint Q{e^{\smallint Pdx}}dx + c
Another form of first order linear differential equation is dxdy+P1x=Q1\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1} , where P1P_1 and Q1Q_1 are functions of y only. And the solution of such an equation is given by x.eP1dx=(Q1×eP1dx)dy+cx.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c

Complete step by step answer:
Step 1: Rearranging the terms in (1+tany)(dxdy)+2xdy=0(1 + \tan y)(dx - dy) + 2xdy = 0
Divide both sides of the equation by dy, we get
(1+tany)(dxdy)+2xdy=0(1 + \tan y)(dx - dy) + 2xdy = 0
(1+tany)(dxdy1)+2x=0(1 + \tan y)(\dfrac{{dx}}{{dy}} - 1) + 2x = 0
Taking dxdy\dfrac{{dx}}{{dy}} separately we get
(1+tany)(dxdy1)+2x=0(1 + \tan y)(\dfrac{{dx}}{{dy}} - 1) + 2x = 0
(1+tany)dxdy(1+tany)+2x=0(1 + \tan y)\dfrac{{dx}}{{dy}} - (1 + \tan y) + 2x = 0
(1+tany)dxdy+2x=(1+tany)(1 + \tan y)\dfrac{{dx}}{{dy}} + 2x = (1 + \tan y)
dxdy+2x1+tany=1\dfrac{{dx}}{{dy}} + \dfrac{{2x}}{{1 + \tan y}} = 1
The above equation is in the form of first order linear differential equation, dxdy+P1x=Q1\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}
Step 2: On comparing both equation dxdy+2x1+tany=1\dfrac{{dx}}{{dy}} + \dfrac{{2x}}{{1 + \tan y}} = 1 & dxdy+P1x=Q1\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1} , we get
P1=2x1+tany{P_1} = \dfrac{{2x}}{{1 + \tan y}} & Q1=1{Q_1} = 1
Step 3: finding the integrating factor (I.F)
As we know that, integrating factor is given by
I.F=eP1dyI.F = {e^{\smallint {P_1}dy}}
Substituting the values we get,
I.F=e21+tanydyI.F = {e^{\smallint \dfrac{2}{{1 + \tan y}}dy}}
We know that tany=sinycosy\tan y = \dfrac{{\sin y}}{{\cos y}} , replacing tan y with its value, we get
\Rightarrow I.F=e2cosycosy+sinydyI.F = {e^{\smallint \dfrac{{2\cos y}}{{\cos y + \sin y}}dy}}
Now adding and subtracting siny in numerator, we get
\Rightarrow I.F=ecosy+siny+cosysinycosy+sinydyI.F = {e^{\smallint \dfrac{{\cos y + \sin y + \cos y - \sin y}}{{\cos y + \sin y}}dy}}
\Rightarrow I.F=e1+cosysinycosy+sinydyI.F = {e^{\smallint 1 + \dfrac{{\cos y - \sin y}}{{\cos y + \sin y}}dy}}
\Rightarrow I.F=ey+log(cosy+siny)I.F = {e^{y + \log (\cos y + \sin y)}} cosysinycosy+sinydy=dlog(cosy+siny)dy\\{ \int {\dfrac{{\cos y - \sin y}}{{\cos y + \sin y}}} dy = \dfrac{{d\log (\cos y + \sin y)}}{{dy}}\\}
\Rightarrow I.F=ey.(cosy+siny)I.F = {e^y}.(\cos y + \sin y)
Step 4: Determining the general solution
As we know that the general solution of linear first degree differential equation is given by,
x.eP1dx=(Q1×eP1dx)dy+cx.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c
Substituting the values, we get
x.ey.(cosy+siny)=1.ey(cosy+siny)dy+Cx.{e^y}.(\cos y + \sin y) = \int {1.} {e^y}(\cos y + \sin y)dy + C
\Rightarrow x.ey.(cosy+siny)=ey(siny+cosy)dy+Cx.{e^y}.(\cos y + \sin y) = \int {{e^y}(\sin y + \cos y)dy} + C
Since, ey[f(y)+f(y)]dy=ey.f(y)+C\int {{e^y}} \left[ {f(y) + f'(y)} \right]dy = {e^y}.f(y) + C
Therefore, we have
x.ey.(cosy+siny)=eysiny+Cx.{e^y}.(\cos y + \sin y) = {e^y}\sin y + C
Cancelling eye^y from both sides, we get
\Rightarrow x.(cosy+siny)=siny+Ceyx.(\cos y + \sin y) = \sin y + C{e^{ - y}}

Note: This function g(x)=ePdxg(x) = {e^{\int {Pdx} }} is called Integrating Factor (I.F.) of the given differential equation.
The general solution of the first order linear differential equation of the form dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q is given by yePdx=QePdxdx+cy{e^{\smallint Pdx}} = \smallint Q{e^{\smallint Pdx}}dx + c
The general solution of the first order linear differential equation of the form dxdy+P1x=Q1\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1} is given by x.eP1dx=(Q1×eP1dx)dy+cx.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c