Solveeit Logo

Question

Question: Write the function in the simplest form \({{\tan }^{-1}}\left( \dfrac{\cos x-\sin x}{\cos x+\sin x...

Write the function in the simplest form
tan1(cosxsinxcosx+sinx){{\tan }^{-1}}\left( \dfrac{\cos x-\sin x}{\cos x+\sin x} \right)

Explanation

Solution

Hint: In this question, we are given a function which is the tangent inverse of another function involving sine and cosine. Therefore, we should try to convert the function inside the parenthesis into a function of tan so that the tan1{{\tan }^{-1}} gets cancelled with tan and we are left with a simple function.

Complete step-by-step answer:

Let us name the given function to be I. Then, from the question
I=tan1(cosxsinxcosx+sinx)....................(1.1)I={{\tan }^{-1}}\left( \dfrac{\cos x-\sin x}{\cos x+\sin x} \right)....................(1.1)
We know from the trigonometric theory that
tanx=sinxcosx......................(1.2)\tan x=\dfrac{\sin x}{\cos x}......................(1.2)
We can divide the numerator and denominator in the parenthesis of (1.1) by cosx\cos x to obtain
I=tan1(cosxsinxcosx+sinx)=tan1(cosxcosxsinxcosxcosxcosx+sinxcosx)=tan1(1sinxcosx1+sinxcosx)I={{\tan }^{-1}}\left( \dfrac{\cos x-\sin x}{\cos x+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{\cos x}{\cos x}-\dfrac{\sin x}{\cos x}}{\dfrac{\cos x}{\cos x}+\dfrac{\sin x}{\cos x}} \right)={{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin x}{\cos x}}{1+\dfrac{\sin x}{\cos x}} \right)
Now, substituting the value of sinxcosx\dfrac{\sin x}{\cos x} from (1.2) into the above equation, we obtain
I=tan1(1sinxcosx1+sinxcosx)=tan1(1tanx1+tanx)..............(1.3)I={{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin x}{\cos x}}{1+\dfrac{\sin x}{\cos x}} \right)={{\tan }^{-1}}\left( \dfrac{1-\tan x}{1+\tan x} \right)..............(1.3)
Now, as tan(45)=1\tan \left( {{45}^{\circ }} \right)=1, we can replace 1 in equation (1.3) and write it as
I=tan1(1tanx1+tanx)=tan1(tan(45)tanx1+tan(45)tanx)..............(1.4)I={{\tan }^{-1}}\left( \dfrac{1-\tan x}{1+\tan x} \right)={{\tan }^{-1}}\left( \dfrac{\tan \left( {{45}^{\circ }} \right)-\tan x}{1+\tan \left( {{45}^{\circ }} \right)\tan x} \right)..............(1.4)
Also, we know that the formula for tangent of difference of two angles is given by
tan(ab)=tanatanb1+tanatanb\tan (a-b)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}
Taking a=45a={{45}^{\circ }} and b=x in the above equation, we obtain
tan(45x)=tan(45)tanx1+tan(45)tanx........(1.5)\tan \left( {{45}^{\circ }}-x \right)=\dfrac{\tan \left( {{45}^{\circ }} \right)-\tan x}{1+\tan \left( {{45}^{\circ }} \right)\tan x}........(1.5)
Therefore, using the value from equation (1.5) into the RHS of equation (1.4), we get
I=tan1(tan(45)tanx1+tan(45)tanx)=tan1(tan(45x))..............(1.6)I={{\tan }^{-1}}\left( \dfrac{\tan \left( {{45}^{\circ }} \right)-\tan x}{1+\tan \left( {{45}^{\circ }} \right)\tan x} \right)={{\tan }^{-1}}\left( \tan \left( {{45}^{\circ }}-x \right) \right)..............(1.6)
Also, as tan1{{\tan }^{-1}} is the inverse function of tan, for any angle θ\theta , and the tangent function has a periodicity of 180{{180}^{\circ }}, we should have
tan1(tanθ)=θ+n×180{{\tan }^{-1}}\left( \tan \theta \right)=\theta +n\times {{180}^{\circ }} where n is any integer.
Therefore, using this expression with θ=45x\theta ={{45}^{\circ }}-x in equation (1.6), we obtain
I=tan1(tan(45x))=45x+n×180 , nZI={{\tan }^{-1}}\left( \tan \left( {{45}^{\circ }}-x \right) \right)={{45}^{\circ }}-x+n\times {{180}^{\circ }}\text{ , }n\in Z
Thus, we have successfully simplified the expression given in the question to be
tan1(cosxsinxcosx+sinx)=45x+n×180 , nZ{{\tan }^{-1}}\left( \dfrac{\cos x-\sin x}{\cos x+\sin x} \right)={{45}^{\circ }}-x+n\times {{180}^{\circ }}\text{ , }n\in Z
Which is the required answer to this question.

Note: We have expressed the angle in degrees while substituting 1 in equation (1.4). However, one can also write the expression as tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1 and then obtain the final answer as tan1(cosxsinxcosx+sinx)=π4x+nπ, nZ{{\tan }^{-1}}\left( \dfrac{\cos x-\sin x}{\cos x+\sin x} \right)=\dfrac{\pi }{4}-x+n\pi \text{, n}\in \text{Z}. However, this answer is the same as obtained in the solution because we can express the angles in radian as π=180\pi ={{180}^{\circ }} and thus π4=45\dfrac{\pi }{4}={{45}^{\circ }}.