Question
Mathematics Question on Inverse Trigonometric Functions
Write the function in the simplest form: tan−1(a3−3ax23a2x−x3),a>0;3−a≤x≤3a
Answer
tan−1(a3−3ax23a2x−x3)
put x= atanθ⇒ax=tanθ⇒θ=tan−1ax.
= tan−1(a3−3ax23a2x−x3)=tan−1(a3−3a3tan2θ3a2.atanθ−a.3tanθ)
=tan−1(a3−3a3tan2θ3a33tanθ−a.3tanθ)
=tan−1(1−3tan2θ3tanθ−tan3θ)=tan−1(tan3θ)
=3θ
= 3tan−1ax