Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Write the function in the simplest form: tan1(3a2xx3a33ax2),a>0;a3xa3\tan ^{-1}(\frac{3a^2x-x^3}{a^3-3ax^2}),a>0;\frac {-a}{\sqrt3} \leq x\leq\frac{ a}{\sqrt3}

Answer

tan1(3a2xx3a33ax2)\tan ^{-1}(\frac{3a^2x-x^3}{a^3-3ax^2})

put x= atanθxa=tanθθ=tan1xa.a \tan\theta\Rightarrow\frac{x}{a}=\tan\theta\Rightarrow\theta=\tan^{-1}\frac{x}{a}.

= tan1(3a2xx3a33ax2)=tan1(3a2.atanθa.3tanθa33a3tan2θ)\tan^{-1}\bigg(\frac{3a^2x-x^3}{a^3-3ax^2}\bigg)=\tan^{-1}\bigg(\frac{3a^2.a\tan\theta-a.3\tan\theta}{a^3-3a^3\tan^2\theta}\bigg)

=tan1(3a33tanθa.3tanθa33a3tan2θ)\tan^{-1}\bigg(\frac{3a^33\tan\theta-a.3\tan\theta}{a^3-3a^3\tan^2\theta}\bigg)

=tan1(3tanθtan3θ13tan2θ)=tan1(tan3θ)\tan^{-1}\bigg(\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}\bigg)=\tan^{-1}(\tan3\theta)

=3θ

= 3tan1xa3\tan^{-1}\frac{x}{a}