Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Write the function in the simplest form: tan1xa2x2,x<atan^{-1}\frac{x}{\sqrt{a^2-x^2}},\mid x\mid<a

Answer

tan1xa2x2tan^{-1}\frac{x}{\sqrt{a^2-x^2}}

put x=a sinθ\sin\theta
xa=sinθθ=sin1(xa)\Rightarrow\frac{x}{a}=\sin\theta\Rightarrow \theta=\sin^{-1}(\frac{x}{a})

tan1xa2x2=tan1asinθa2a2sin2θ\therefore \tan^{-1}\frac{x}{\sqrt {a^2-x^2}}=\tan^{-1}\frac{a \sin\theta}{\sqrt {a^2-a^2\sin^2\theta}}

=tan1(asinθa1sin2θ)\tan^{-1}\bigg( \frac{a \sin\theta}{a\sqrt{1-\sin^2\theta}}\bigg)

=tan1(asinθacosθ)\tan^{-1}\bigg(\frac{a \sin\theta}{a \cos\theta}\bigg)

= tan1(tanθ)=θ=sin1xa\tan^{-1}(\tan\theta)=\theta= \sin^{-1}\frac{x}{a}