Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Write the function in the simplest form: tan11x21,x>1\tan^{-1}\frac{1}{\sqrt{x^2-1}},\mid{x}\mid>1

Answer

tan11x21,x>1\tan^{-1}\frac{1}{\sqrt{x^2-1}},\mid{x}\mid>1

put x=cosec θ \Rightarrow θ= cosec-1 x
tan11x21=tan11cosec2θ1\tan^{-1} \frac{1}{\sqrt{x^2-1}}=\tan^{-1}\frac{1}{\sqrt{\cosec^2\theta-1}}

tan1(1cotθ)=tan1(tanθ)\tan^{-1}(\frac{1}{cot\theta})=\tan^{-1}(\tan\theta)

θ=cosec1x=π2sec1x[cosec1x+sec1x=π2]\Rightarrow \theta=\cosec^{-1}x=\frac{\pi} {2}-\sec^{-1}x\:[\cosec^{-1}x+\sec^{-1}x=\frac{\pi}{2}]