Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Write the function in the simplest form: tan11+x21x,x0.\tan^{-1}\frac{\sqrt1+x^2-1}{x},x\neq0.

Answer

tan11+x21x\tan^{-1}\frac{\sqrt1+x^2-1}{x},

put x=\tan\theta$$\Rightarrow θ\theta= tan1x\tan^{-1}x

tan11+x21x\therefore \tan^{-1}\frac{\sqrt1+x^2-1}{x} =tan11+tan2θ1tanθ\tan^{-1}\frac{\sqrt1+\tan2\theta-1}{\tan\theta}

= tan1(secθ1)tanθ=tan1(1cosθsinθ)\tan^{-1}\frac{(\sec\theta-1)}{\tan\theta}=\tan^{-1}(\frac{1-\cos\theta}{\sin\theta})

=tan12sin2θ22sinθ22cosθ2\tan^{-1}\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}2\cos\frac{\theta}{2}}

=tan1(tanθ2)=θ2=12tan1x\tan^{-1}(\frac{\tan\theta}{2})=\frac{\theta}{2}=\frac{1}{2}\tan^{-1}x