Solveeit Logo

Question

Question: Write the formula to find the shortest distance between two straight lines whose vector equations ar...

Write the formula to find the shortest distance between two straight lines whose vector equations are r=a1+λb1 and r=a2+πb2\vec{r}=\overrightarrow{{{a}_{1}}}+\lambda \overrightarrow{{{b}_{1}}}\text{ and }\vec{r}=\overrightarrow{{{a}_{2}}}+\pi \overrightarrow{{{b}_{2}}} where λ and π\lambda \text{ and }\pi are scalars.

Explanation

Solution

In this question, we are given an equation of two lines in vector notation and we have to find the shortest distance between them. For that, we will first observe the lines and then determine if the lines are parallel or skew lines. After that, we will state the formula for finding the shortest distance between lines according to, if lines are parallel or skew.

Complete step-by-step solution:
Here, we are given pair of lines in vector form as r=a1+λb1 and r=a2+πb2\vec{r}=\overrightarrow{{{a}_{1}}}+\lambda \overrightarrow{{{b}_{1}}}\text{ and }\vec{r}=\overrightarrow{{{a}_{2}}}+\pi \overrightarrow{{{b}_{2}}} where λ and π\lambda \text{ and }\pi are scalars.
As we can see, one line has b1\overrightarrow{{{b}_{1}}} and another line has b2\overrightarrow{{{b}_{2}}} therefore, they are not parallel. So, these lines are skew lines.
Skew lines are the lines in three-dimensional geometry that do not intersect and not parallel.
We need to find the shortest distance between these two skew lines. The shortest distance between a pair of skew lines can be found by obtaining the length of the line segment that melts perpendicularly with both lines.

In this figure, length of d is the shortest distance. Formula for finding shortest distance between two skew lines r=a1+λb1 and r=a2+πb2\vec{r}=\overrightarrow{{{a}_{1}}}+\lambda \overrightarrow{{{b}_{1}}}\text{ and }\vec{r}=\overrightarrow{{{a}_{2}}}+\pi \overrightarrow{{{b}_{2}}} where λ and π\lambda \text{ and }\pi are scalars is given by
d=(b1×b2)(a2a1)b1×b2d=\left| \dfrac{\left( \overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} \right)\cdot \left( \overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}} \right)}{\left| \overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} \right|} \right|
Where b1×b2\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} represents cross product between b1 and b2\overrightarrow{{{b}_{1}}}\text{ and }\overrightarrow{{{b}_{2}}} and can be given by b1×b2=b1b2sinθn^\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}=\left| \overrightarrow{{{b}_{1}}} \right|\left| \overrightarrow{{{b}_{2}}} \right|\sin \theta \hat{n} where b1,b2\left| \overrightarrow{{{b}_{1}}} \right|,\left| \overrightarrow{{{b}_{2}}} \right| represents magnitude of b1 and b2\overrightarrow{{{b}_{1}}}\text{ and }\overrightarrow{{{b}_{2}}}.
Hence, shortest distance between lines r=a1+λb1 and r=a2+πb2\vec{r}=\overrightarrow{{{a}_{1}}}+\lambda \overrightarrow{{{b}_{1}}}\text{ and }\vec{r}=\overrightarrow{{{a}_{2}}}+\pi \overrightarrow{{{b}_{2}}} is equal to (b1×b2)(a2a1)b1×b2\left| \dfrac{\left( \overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} \right)\cdot \left( \overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}} \right)}{\left| \overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} \right|} \right|.

Note: Students should take care that, in the formula, if b1×b2\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} is taken then we have to take a2a1\overrightarrow{{{a}_{2}}}-\overrightarrow{{{a}_{1}}} and if we take b2×b1\overrightarrow{{{b}_{2}}}\times \overrightarrow{{{b}_{1}}} then we have to take a1a2\overrightarrow{{{a}_{1}}}-\overrightarrow{{{a}_{2}}}. Students should note that b1×b2b2×b1\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}\ne \overrightarrow{{{b}_{2}}}\times \overrightarrow{{{b}_{1}}}. b1×b2\left| \overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}} \right| represents magnitude of b1×b2\overrightarrow{{{b}_{1}}}\times \overrightarrow{{{b}_{2}}}. Students should not get confused that if lines are not parallel then they should be intersecting. We are talking about three dimensional geometry here, so there exist lines which are neither parallel nor do they intersect.