Question
Mathematics Question on Algebraic Identities
Write the following cubes in expanded form:
(i) (2x + 1)3 (ii) (2a – 3b) 3 (iii) [23 x + 1]3 (iv) [x - 32y]3
Answer
(i) It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a - b)3 = a3 - b3 - 3ab(a - b)
(2x + 1)3 = (2x)3 (1)3 + 3(2x)(1)(2x + 1) = 8x3 + 1 + 6x (2x + 1)
= 8x3 + 1 + 12x2 + 6x = 8x3 + 12x2 + 6x + 1
(ii) (2a - 3b)3 = (2a)3 - (3b)3 - 3(2a)(3b)(2a - 3b)
= 8a3 - 27b3 - 18ab (2a - 3b) = 8a3 - 27b3 - 36a2b + 54ab2
(iii) [23 x + 1]3 = [23 x]3 + (1)3 + 3(23x)(1)(23 x + 1)
= 827 x3 + 1 + 29(23 x + 1)
= 827 x3 + 1 + 427x2 + 292x
= 827 x3 + 427 x2 + 29 x + 1
(iv) [x - 32 y]3 = x3 - (32 y)3 - 3 (x) (32 y)(x - 32 y)
= x3 - 278 y3 - 2xy (x - 32 y)
= x3 - 278y3 - 2x2 y + 34 xy2.