Solveeit Logo

Question

Mathematics Question on Algebraic Identities

Write the following cubes in expanded form:

(i) (2x + 1)3 (ii) (2a – 3b) 3 (iii) [32\frac{3}{2} x + 1]3 (iv) [x - 23\frac{2 }{ 3} y]3

Answer

(i) It is known that,

(a + b)3 = a3 + b3 + 3ab(a + b) and (a - b)3 = a3 - b3 - 3ab(a - b)

(2x + 1)3 = (2x)3 (1)3 + 3(2x)(1)(2x + 1) = 8x3 + 1 + 6x (2x + 1)

= 8x3 + 1 + 12x2 + 6x = 8x3 + 12x2 + 6x + 1


(ii) (2a - 3b)3 = (2a)3 - (3b)3 - 3(2a)(3b)(2a - 3b)

= 8a3 - 27b3 - 18ab (2a - 3b) = 8a3 - 27b3 - 36a2b + 54ab2


(iii) [32\frac{3 }{ 2} x + 1]3 = [32\frac{3 }{ 2} x]3 + (1)3 + 3(32\frac{3 }{ 2}x)(1)(32\frac{3 }{ 2} x + 1)

= 278\frac{27 }{ 8} x3 + 1 + 92\frac{9 }{ 2}(32\frac{3 }{ 2} x + 1)

= 278\frac{27 }{ 8} x3 + 1 + 274\frac{27 }{ 4}x2 + 92\frac{9 }{ 2}2x

= 278\frac{27 }{ 8} x3 + 274\frac{27 }{ 4} x2 + 92\frac{9 }{ 2} x + 1


(iv) [x - 23\frac{2 }{3} y]3 = x3 - (23\frac{2 }{3} y)3 - 3 (x) (23\frac{2 }{3} y)(x - 23\frac{2 }{3} y)

= x3 - 827\frac{8 }{ 27} y3 - 2xy (x - 23\frac{2 }{ 3} y)

= x3 - 827\frac{8 }{ 27}y3 - 2x2 y + 43\frac{4 }{ 3} xy2.