Solveeit Logo

Question

Question: Write the eccentricity of the ellipse \(9{x^2} + 5{y^2} - 18x - 2y - 16 = 0\)....

Write the eccentricity of the ellipse 9x2+5y218x2y16=09{x^2} + 5{y^2} - 18x - 2y - 16 = 0.

Explanation

Solution

We will convert the given equation in standard form by taking 99 common from the terms of xx and 55 from the terms of yy. We will convert it into an equation similar to the standard equation given by: x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1, where b>ab > a. The eccentricity of ellipse is: e2=1a2b2{e^2} = 1 - \dfrac{{{a^2}}}{{{b^2}}}. So, by putting the value of a and b, we can calculate the value of eccentricity.

Complete step-by-step answer:
We are given the equation of an ellipse as: 9x2+5y218x2y16=09{x^2} + 5{y^2} - 18x - 2y - 16 = 0
We are required to calculate its eccentricity.
First of all, let us convert this equation similar to the standard equation of an ellipse given by: x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1, where b>ab > a.
Taking 99 common from the terms of xx and 55 from the terms of yy, we can write the equation as:
9(x22)+5(y225)16=0\Rightarrow 9\left( {{x^2} - 2} \right) + 5\left( {{y^2} - \dfrac{2}{5}} \right) - 16 = 0
Adding and subtracting 12{1^2} from the first term and adding and subtracting (15)2{\left( {\dfrac{1}{5}} \right)^2} in the second term of the equation, we get
9(x22+12)9(12)+5(y225+152)5(152)16=0\Rightarrow 9\left( {{x^2} - 2 + {1^2}} \right) - 9\left( {{1^2}} \right) + 5\left( {{y^2} - \dfrac{2}{5} + \dfrac{1}{{{5^2}}}} \right) - 5\left( {\dfrac{1}{{{5^2}}}} \right) - 16 = 0
On simplifying this equation, we get
9(x22+12)+5(y225+152)=9(12)+5(152)+16\Rightarrow 9\left( {{x^2} - 2 + {1^2}} \right) + 5\left( {{y^2} - \dfrac{2}{5} + \dfrac{1}{{{5^2}}}} \right) = 9\left( {{1^2}} \right) + 5\left( {\dfrac{1}{{{5^2}}}} \right) + 16
Or, we can write this equation as:
9(x22+12)+5(y225+152)=9+15+16\Rightarrow 9\left( {{x^2} - 2 + {1^2}} \right) + 5\left( {{y^2} - \dfrac{2}{5} + \dfrac{1}{{{5^2}}}} \right) = 9 + \dfrac{1}{5} + 16
9(x22+12)+5(y225+152)=1265\Rightarrow 9\left( {{x^2} - 2 + {1^2}} \right) + 5\left( {{y^2} - \dfrac{2}{5} + \dfrac{1}{{{5^2}}}} \right) = \dfrac{{126}}{5}
Now, using the formula: (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}, we can write the above equation as:
9(x1)2+5(y15)2=1265\Rightarrow 9{\left( {x - 1} \right)^2} + 5{\left( {y - \dfrac{1}{5}} \right)^2} = \dfrac{{126}}{5}
Dividing both sides by 1265\dfrac{{126}}{5}, we get
9(x1)21265+5(y15)21265=1\Rightarrow \dfrac{{9{{\left( {x - 1} \right)}^2}}}{{\dfrac{{126}}{5}}} + \dfrac{{5{{\left( {y - \dfrac{1}{5}} \right)}^2}}}{{\dfrac{{126}}{5}}} = 1
Or, we can also write it as:
(x1)212645+(y15)212625=1\Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{{\dfrac{{126}}{{45}}}} + \dfrac{{{{\left( {y - \dfrac{1}{5}} \right)}^2}}}{{\dfrac{{126}}{{25}}}} = 1
This is similar to the standard equation x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1, where b>ab > a.
Here, a2=12645{a^2} = \dfrac{{126}}{{45}} and b2=12625{b^2} = \dfrac{{126}}{{25}}.
The eccentricity of an ellipse is given by the formula: e2=1a2b2{e^2} = 1 - \dfrac{{{a^2}}}{{{b^2}}}. On putting the values of a2{a^2} and b2{b^2}, we get
e2=1a2b2=11264512625\Rightarrow {e^2} = 1 - \dfrac{{{a^2}}}{{{b^2}}} = 1 - \dfrac{{\dfrac{{126}}{{45}}}}{{\dfrac{{126}}{{25}}}}
e2=12545=452545=2045=49\Rightarrow {e^2} = 1 - \dfrac{{25}}{{45}} = \dfrac{{45 - 25}}{{45}} = \dfrac{{20}}{{45}} = \dfrac{4}{9}
Taking square roots both sides, we get
e=23\Rightarrow e = \dfrac{2}{3}
Therefore, the eccentricity of the given ellipse is 23\dfrac{2}{3}.

Note: In this question, we may get confused in the steps while converting the given equation in terms of a standard equation of ellipse especially when we added and subtracted 12{1^2} and 152\dfrac{1}{{{5^2}}} to make it a perfect square. We can directly use the formula of eccentricity of the ellipse as: e=1bb2a2e = \dfrac{1}{b}\sqrt {{b^2} - {a^2}} but it will be more complex since the taking the square root of 44 and 99 isn’t that tough.