Solveeit Logo

Question

Question: Write the direction cosines of the normal to plane \(3x+4y+12z=52\)....

Write the direction cosines of the normal to plane 3x+4y+12z=523x+4y+12z=52.

Explanation

Solution

We can write the equation of the plane which Is normal to ax+by+cz=dax+by+cz=d as rˉ.nˉ=d\bar{r}.\bar{n}=d where nˉ=ai^+bj^+ck^\bar{n}=a\hat{i}+b\hat{j}+c\hat{k}. Now the direction cosines of the normal plane can be calculated by calculating the unit vector of nˉ\bar{n}. The direction cosines are equal to the coefficient of the unit vector n^\hat{n}.

Complete step by step answer:
Given plane, 3x+4y+12z=523x+4y+12z=52
Comparing it with ax+by+cz=dax+by+cz=d then a=3a=3, b=4b=4, c=12c=12.
Let the equation of the plane which is normal to 3x+4y+12z=523x+4y+12z=52 can be calculated by
rˉ.nˉ=d\bar{r}.\bar{n}=d where nˉ=ai^+bj^+ck^\bar{n}=a\hat{i}+b\hat{j}+c\hat{k}. Substituting the values of aa, bb, cc in the above equation, then we will get the equation of the plane as rˉ.(3i^+4j^+12k^)=52\Rightarrow \bar{r}.\left( 3\hat{i}+4\hat{j}+12\hat{k} \right)=52 and nˉ=3i^+4j^+12k^\bar{n}=3\hat{i}+4\hat{j}+12\hat{k}
Now the magnitude the vector nˉ\bar{n} is
nˉ=a2+b2+c2 nˉ=32+42+122 nˉ=9+16+144 nˉ=169 nˉ=13 \begin{aligned} & \left| {\bar{n}} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}} \\\ & \Rightarrow \left| {\bar{n}} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}} \\\ & \Rightarrow \left| {\bar{n}} \right|=\sqrt{9+16+144} \\\ & \Rightarrow \left| {\bar{n}} \right|=\sqrt{169} \\\ & \Rightarrow \left| {\bar{n}} \right|=13 \\\ \end{aligned}
Now the unit vector of the vector nˉ\bar{n} is given by
n^=nˉnˉ n^=(3i^+4j^+12k^)13 n^=(313)i^+(413)j^+(1213)k^ \begin{aligned} & \hat{n}=\dfrac{{\bar{n}}}{\left| {\bar{n}} \right|} \\\ & \Rightarrow \hat{n}=\dfrac{\left( 3\hat{i}+4\hat{j}+12\hat{k} \right)}{13} \\\ & \Rightarrow \hat{n}=\left( \dfrac{3}{13} \right)\hat{i}+\left( \dfrac{4}{13} \right)\hat{j}+\left( \dfrac{12}{13} \right)\hat{k} \\\ \end{aligned}
Now the coefficients of the unit vector n^\hat{n} are (313,413,1213)\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)

\therefore The direction cosines are (313,413,1213)\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right).

Note: We will also solve this problem in another method. In this method we will divide the equation of the plane ax+by+cz=dax+by+cz=d with a2+b2+c2\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}, then the equation of the plane converts into form lx+my+nz=plx+my+nz=p. Now the values of direction cosines are (l,m,n)\left( l,m,n \right).
Given plane, 3x+4y+12z=523x+4y+12z=52
Comparing it with ax+by+cz=dax+by+cz=d then a=3a=3, b=4b=4, c=12c=12.
Dividing the plane equation with a2+b2+c2=32+42+122=13\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}}=13, then we will get
3x+4y+12z13=5213 (313)x+(413)y+(1213)z=4 \begin{aligned} & \dfrac{3x+4y+12z}{13}=\dfrac{52}{13} \\\ & \Rightarrow \left( \dfrac{3}{13} \right)x+\left( \dfrac{4}{13} \right)y+\left( \dfrac{12}{13} \right)z=4 \\\ \end{aligned}
Comparing the above equation with lx+my+nz=plx+my+nz=p, then the values of ll,mm,nn are
l=313l=\dfrac{3}{13}, m=413m=\dfrac{4}{13}, n=1213n=\dfrac{12}{13}.
\therefore The direction cosines are (l,m,n)=(313,413,1213)\left( l,m,n \right)=\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)
From both the methods we got the same result.