Solveeit Logo

Question

Question: Write \[\sec x + \tan x\] in terms of a tangent function....

Write secx+tanx\sec x + \tan x in terms of a tangent function.

Explanation

Solution

Hint : We will first convert the given expression in terms of sine and cosine function. Then we will use the concept of half angle and the basic formula for (a+b)2{\left( {a + b} \right)^2}. Further we will simplify by using the formula of (a2b2)\left( {{a^2} - {b^2}} \right). Then in order to convert the resulting expression into tangent function we will divide by cosine function and then try to convert the given expression into the formula for tan(a+b)\tan \left( {a + b} \right).

Complete step-by-step answer :
Given expression;
secx+tanx\sec x + \tan x
Now we will convert the given expression in terms of sine and cosine function.
We know,
secx=1cosx\sec x = \dfrac{1}{{\cos x}} and tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
So, the given expression becomes;
=1cosx+sinxcosx= \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}
Now we will add the two fractions using cosx\cos x as the LCM. So, we get;
=1+sinxcosx= \dfrac{{1 + \sin x}}{{\cos x}}
We know, sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
So, sin2(x2)=2sin(x2)cos(x2)\sin 2\left( {\dfrac{x}{2}} \right) = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)
Putting these values in the above expression we get,
=1+2sinx2cosx2cosx= \dfrac{{1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{\cos x}}
Now we know that, cosx=cos2x2sin2x2\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}. So, we will use the in the denominator. So, we get
=1+2sinx2cosx2cos2x2sin2x2= \dfrac{{1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}
Now we know that, sin2x2+cos2x2=1{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1, so we will replace 11 in the numerator using this formula. So, we get;
=sin2x+cos2x+2cosx2sinx2cos2x2sin2x2= \dfrac{{{{\sin }^2}x + {{\cos }^2}x + 2\cos \dfrac{x}{2}\sin \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}
We can see that the numerator can be written as (a+b)2{\left( {a + b} \right)^2} and in the denominator we will use the formula; a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right), so, we will get;
=(sinx2+cosx2)2(cosx2sinx2)(cosx2+sinx2)= \dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}
Now we will cancel the common terms in the numerator and the denominator. We get,
=(sinx2+cosx2)(cosx2sinx2)= \dfrac{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}
We have to get the result in terms of tangent function, so we will divide both the numerator and the denominator by cosx2\cos \dfrac{x}{2}. So, we get;
=sinx2cosx2+cosx2cosx2cosx2cosx2sinx2cosx2= \dfrac{{\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}
Now we will use the formula that; tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}. So, on further simplification we get,
=tanx2+11tanx2= \dfrac{{\tan \dfrac{x}{2} + 1}}{{1 - \tan \dfrac{x}{2}}}
Now we will replace 11, in the numerator by tanπ4\tan \dfrac{\pi }{4} because tanπ4=1\tan \dfrac{\pi }{4} = 1.
=tanx2+tanπ41tanx2= \dfrac{{\tan \dfrac{x}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{x}{2}}}
Now we can write the denominator as (1tanx2)=(1tanπ4tanx2)\left( {1 - \tan \dfrac{x}{2}} \right) = \left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{x}{2}} \right). So, we get;
=tanx2+tanπ41tanπ4tanx2= \dfrac{{\tan \dfrac{x}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{x}{2}}}
As we can see that this is the formula for tan(a+b)\tan \left( {a + b} \right), a=x2,b=π4a = \dfrac{x}{2},b = \dfrac{\pi }{4}. So, using this we get;
=tan(x2+π4)= \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right).
So, the correct answer is “=tan(x2+π4) = \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)”.

Note : One major problem the students face here is that they get confused whether tana+tanb1tanatanb\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}} is tan(a+b)\tan \left( {a + b} \right) or tan(ab)\tan \left( {a - b} \right). So, we should note here that while writing the formula for tan(a+b)\tan \left( {a + b} \right) we write plus in the numerator and minus in the denominator. While writing the formula for tan(ab)\tan \left( {a - b} \right) we write minus in the numerator and plus in the denominator.