Solveeit Logo

Question

Question: Write down and simplify The \({\text{1}}{{\text{4}}^{th}}\)term of \({\left( {{2^{10}} - {2^7}x} \...

Write down and simplify
The 14th{\text{1}}{{\text{4}}^{th}}term of (21027x)132{\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}

Explanation

Solution

Hint: Use general term (i.e.(r+1)th term)\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right) in the expansion of (1+x)n{\left( {1 + x} \right)^n}=
Tr+1=n(n1)(n2)............(nr+1)r!xr{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}

Given equation is:
(21027x)132{\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}
Take 210{2^{10}}as common
(21027x)132=(210)132(127210x)132=265(1x8)132\Rightarrow {\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}} = {\left( {{2^{10}}} \right)^{\dfrac{{13}}{2}}}{\left( {1 - \dfrac{{{2^7}}}{{{2^{10}}}}x} \right)^{\dfrac{{13}}{2}}} = {2^{65}}{\left( {1 - \dfrac{x}{8}} \right)^{\dfrac{{13}}{2}}}
Now as we know the general term (i.e.(r+1)th term)\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right) in the expansion of (1+x)n{\left( {1 + x} \right)^n}is given as
Tr+1=n(n1)(n2)............(nr+1)r!xr{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}
14th\therefore {14^{th}}Term is T14{T_{14}}, for r=13r = 13
\therefore {{\text{T}}_{14}} = \dfrac{{{2^{65}}}}{{13!}}\left\\{ \dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 1} \right)\left( {\dfrac{{13}}{2} - 2} \right)\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 5} \right)\left( {\dfrac{{13}}{2} - 6} \right) \\\ {\text{ }} \times \left( {\dfrac{{13}}{2} - 7} \right)\left( {\dfrac{{13}}{2} - 8} \right)\left( {\dfrac{{13}}{2} - 9} \right)\left( {\dfrac{{13}}{2} - 10} \right)\left( {\dfrac{{13}}{2} - 11} \right)\left( {\dfrac{{13}}{2} - 12} \right){\left( { - \dfrac{x}{8}} \right)^{13}} \\\ \right\\}
T14265[132(112)(92)(72)(52)(32)(12)(12)(32)(52)(72)(92)(112)13×12×11×10×9×8×7×6×5×4×3×2×1(x8)13]\therefore {{\text{T}}_{14}} \Rightarrow {2^{65}}\left[ {\dfrac{{\dfrac{{13}}{2}\left( {\dfrac{{11}}{2}} \right)\left( {\dfrac{9}{2}} \right)\left( {\dfrac{7}{2}} \right)\left( {\dfrac{5}{2}} \right)\left( {\dfrac{3}{2}} \right)\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)\left( { - \dfrac{9}{2}} \right)\left( { - \dfrac{{11}}{2}} \right)}}{{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( { - \dfrac{x}{8}} \right)}^{13}}} \right]
265[13.11.9.7.5.3.1.1.3.5.7.9.11213.13.12.11.10.9.8.7.6.5.4.3.2.1.813(x13)]\Rightarrow {2^{65}}\left[ {\dfrac{{13.11.9.7.5.3.1.1.3.5.7.9.11}}{{{2^{13}}{{.13.12.11.10.9.8.7.6.5.4.3.2.1.8}^{13}}}}\left( { - {x^{13}}} \right)} \right]
213[3.5.7.9.1112.10.8.6.4.2](x13)=1848x13\Rightarrow {2^{13}}\left[ {\dfrac{{3.5.7.9.11}}{{12.10.8.6.4.2}}} \right]\left( { - {x^{13}}} \right) = - 1848{x^{13}}
So, this is the required value of the 14th{14^{th}} term.

Note: - In such types of questions the key concept is that we have to remember the general term (i.e.(r+1)th term)\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right) which is stated above in the expansion of (1+x)n{\left( {1 + x} \right)^n}, then calculate the required term using this formula and simplify then we will get the required answer.