Question
Question: Write down and simplify The \({\text{1}}{{\text{4}}^{th}}\)term of \({\left( {{2^{10}} - {2^7}x} \...
Write down and simplify
The 14thterm of (210−27x)213
Solution
Hint: Use general term (i.e.(r+1)th term) in the expansion of (1+x)n=
Tr+1=r!n(n−1)(n−2)............(n−r+1)xr
Given equation is:
(210−27x)213
Take 210as common
⇒(210−27x)213=(210)213(1−21027x)213=265(1−8x)213
Now as we know the general term (i.e.(r+1)th term) in the expansion of (1+x)nis given as
Tr+1=r!n(n−1)(n−2)............(n−r+1)xr
∴14thTerm is T14, for r=13
\therefore {{\text{T}}_{14}} = \dfrac{{{2^{65}}}}{{13!}}\left\\{
\dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 1} \right)\left( {\dfrac{{13}}{2} - 2} \right)\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 5} \right)\left( {\dfrac{{13}}{2} - 6} \right) \\\
{\text{ }} \times \left( {\dfrac{{13}}{2} - 7} \right)\left( {\dfrac{{13}}{2} - 8} \right)\left( {\dfrac{{13}}{2} - 9} \right)\left( {\dfrac{{13}}{2} - 10} \right)\left( {\dfrac{{13}}{2} - 11} \right)\left( {\dfrac{{13}}{2} - 12} \right){\left( { - \dfrac{x}{8}} \right)^{13}} \\\
\right\\}
∴T14⇒26513×12×11×10×9×8×7×6×5×4×3×2×1213(211)(29)(27)(25)(23)(21)(−21)(−23)(−25)(−27)(−29)(−211)(−8x)13
⇒265[213.13.12.11.10.9.8.7.6.5.4.3.2.1.81313.11.9.7.5.3.1.1.3.5.7.9.11(−x13)]
⇒213[12.10.8.6.4.23.5.7.9.11](−x13)=−1848x13
So, this is the required value of the 14th term.
Note: - In such types of questions the key concept is that we have to remember the general term (i.e.(r+1)th term) which is stated above in the expansion of (1+x)n, then calculate the required term using this formula and simplify then we will get the required answer.