Solveeit Logo

Question

Question: Write down a unit vector in the XY- plane, making an angle of 300 with the position direction of the...

Write down a unit vector in the XY- plane, making an angle of 300 with the position direction of the x-axis.

Explanation

Solution

A unit vector in the XY-plane indicates that there is no z-axis , we have to find the value of a=xi^+yj^\vec a = x\hat i + y\hat jand for so that we will let a unit vector a\vec a and using the formula of dot producta.b=abcosθ\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta we will find the value of x and y.

Complete step-by-step answer:
Step 1: Let the unit vector bea\vec a, we know that a=xi^+yj^+zk^\vec a = x\hat i + y\hat j + z\hat k, here the x-axis is i^\hat i, y-axis is j^\hat j and z-axis is k^\hat k.
Since the vector is in XY-plane that means there is no z-coordinate (z=0)
Then, a=xi^+yj^+0k^\vec a = x\hat i + y\hat j + 0\hat k
a=xi^+yj^\vec a = x\hat i + y\hat j, the unit vector is in direction of x-axis is i^\hat iand y-axis isj^\hat j. According to the question a\vec a makes an angle of 30{30^ \circ } with x-axis. So, the angle between a&i^\vec a\& \hat iis 30{30^ \circ }

Step2: Now, using the formula of the dot product
a.b=abcosθ\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta ( Is unit vector then its magnitude will be 1 i.e. a\left| {\vec a} \right|=1), b=i^\vec b = \hat i and θ=30\theta = {30^ \circ }
\Rightarrow a.i^=1i^cos30\vec a.\hat i = \left| 1 \right|\left| {\hat i} \right|\cos {30^ \circ } (Similarly i^\hat i is a unit vector, i^\left| {\hat i} \right|=1)
\Rightarrow a.i^=1.1.32\vec a.\hat i = 1.1.\dfrac{{\sqrt 3 }}{2} (cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2})
\Rightarrow a.i^=32\vec a.\hat i = \dfrac{{\sqrt 3 }}{2} , and we have a=xi^+yj^+0k^\vec a = x\hat i + y\hat j + 0\hat k, and i^=\hat i = (1i^+0j^+0k^)(1\hat i + 0\hat j + 0\hat k) putting this value we get,
(xi^+yj^+0k^).i^=32 (xi^+yj^+0k^)(1i^+0j^+0k^)=32 x.1+y.0+0.0=32 x=32  \Rightarrow (x\hat i + y\hat j + 0\hat k).\hat i = \dfrac{{\sqrt 3 }}{2} \\\ \Rightarrow (x\hat i + y\hat j + 0\hat k)(1\hat i + 0\hat j + 0\hat k) = \dfrac{{\sqrt 3 }}{2} \\\ \Rightarrow x.1 + y.0 + 0.0 = \dfrac{{\sqrt 3 }}{2} \\\ \Rightarrow x = \dfrac{{\sqrt 3 }}{2} \\\
Step3: The angle between x and y-axis is90{90^ \circ } and the angle between a&i^\vec a\& \hat i is 30{30^ \circ } so, the angle between isa&j^=60\vec a\& \hat j = {60^ \circ }. (As shown in the given figure)

Similarly, using the same method
a.b=abcosθ\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta , substituting the value of b=j^&θ=60\vec b = \hat j\& \theta = {60^ \circ }

\Rightarrow \vec a.\hat j = \left| {\vec a} \right|\left| {\hat j} \right|\cos 60 \\\ \Rightarrow \vec a.\hat j = 1.1\cos {60^ \circ } \\\ \Rightarrow \vec a.\hat j = \dfrac{1}{2} \\\ $$ ($$\cos {60^ \circ }$$=$$\dfrac{1}{2}$$) We have $\vec a = x\hat i + y\hat j + 0\hat k$ and $$\hat j = (0\hat i + 1\hat j + 0\hat k)$$

\Rightarrow (x\hat i + y\hat j + 0\hat k)(0\hat i + 1\hat j + 0\hat k) = \dfrac{1}{2} \\
\Rightarrow x.0 + y.1 + 0.0 = \dfrac{1}{2} \\
\Rightarrow y = \dfrac{1}{2} \\

STEP4:Sonowwehaveobtainedboththevalueofxandy.Thus,STEP4: So now we have obtained both the value of x and y. Thus,

\Rightarrow \vec a = x\hat i + y\hat j \\
\Rightarrow \vec a = \dfrac{{\sqrt 3 }}{2}\hat i + \dfrac{1}{2}\hat j \\

**Note:** Always remember that a unit vector has a magnitude of 1. Don’t get confused while putting the value of $\theta $ because in step1 when we were finding the value of x then we have taken the angle between x and $\vec a$ i.e. ${30^ \circ }$ and when we were finding the value of y then we have taken the angle between y and $\vec a$ i.e. ${60^ \circ }$.