Solveeit Logo

Question

Mathematics Question on Vector Algebra

Write down a unit vector in plane,making an angle of 30°30°with the positive direction of xaxis.x-axis.

Answer

If r\vec{r} is a unit vector in the XYXY-plane,then r=cosθi^+sinθj^.\vec{r}=cosθ\hat{i}+sinθ\hat{j}.
Here,θ is the angle made by the unit vector with the positive direction of the xaxis.x-axis.
Therefore,for θ=30°:θ=30°:
r=cos30i^+sin30j^=32i^+12j^\vec{r}=cos30^{\degree}\hat{i}+sin30^{\degree}\hat{j}={\frac{\sqrt{3}}{2}}\hat{i}+\frac{1}{2}\hat{j}
Hence,the required unit vector is 32i^+12j^{\frac{\sqrt{3}}{2}}\hat{i}+\frac{1}{2}\hat{j}.