Solveeit Logo

Question

Question: Write dimension of force, density, velocity, work, pressure....

Write dimension of force, density, velocity, work, pressure.

Explanation

Solution

First of all, write the formula for the given quantities i.e., force = mass×acceleration{\text{force = mass}} {\times acceleration}, density = massvolume{\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}, velocity = change in displacementtime{\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}, pressure = forcetime{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}} and pressure = forcetime{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}and then write the dimensional formula for them.

Complete step by step solution:
density = massvolume{\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for force = mass×acceleration{\text{force = mass}} {\times acceleration}.
Dimensional formula for mass is [M1L0T0]{\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}} and dimensional formula for acceleration is[M0L1T - 2]{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}.
Thus, dimensional formula for force is [M1L1T - 2]{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}.
SI unit of force is kg m s - 2{\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}.

(2) Dimensional formula for mass is [M1L0T0]{\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}} and dimensional formula for volume is [M0L3T0]{\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}.
Thus, dimensional formula for density is [M1L3T0]{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}.
SI unit of density is kg m - 3{\text{kg }}{{\text{m}}^{{\text{ - 3}}}}.

(3) Formula for velocity = change in displacementtime{\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}
Dimensional formula for displacement is [M0L1T0]{\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}} and dimensional formula for time is [M0L0T1]{\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}.
Thus, dimensional formula for velocity is [M0L1T1]{\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}.
SI unit of velocity is s - 1{\text{m }}{{\text{s}}^{{\text{ - 1}}}}.

(4) Formula for work = force×distance{\text{work = force}} {\times distance}
Dimensional formula for force is [M1L1T - 2]{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} and dimensional formula for distance is [M0L1T0]{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}.
Thus, dimensional formula for work is [M1L2T - 2]{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}.
SI unit of work is kg m2 s2{\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}.

(5) Formula for pressure = forcetime{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}
Dimensional formula for force is [M1L1T - 2]{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} and dimensional formula for time is [M0L0T1]{\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}.
Thus, dimensional formula for pressure is [M1L1T - 2]{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}.
SI unit of pressure is Pascal (Pa{\text{Pa}}).

Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
[M0L1T0]{\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}} and the dimensional formula for area is [M0L2T0]{\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}.