Solveeit Logo

Question

Question: Write a unit vector perpendicular to both the vectors \(\vec{a}=\hat{i}+\hat{j}+\hat{k}\) and \(\vec...

Write a unit vector perpendicular to both the vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j}.

Explanation

Solution

Now we know that We know the perpendicular vector of two vectors is given by cross product of two vectors. Cross product of the two vectors a1i^+a2j^+a3k^{{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b1i^+b2j^+b3k^{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} is given by determinant of matrix [i^j^k^ a1a2a3 b1b2b3 ]\left[ \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right] Hence we can easily find perpendicular to both the vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j}.
Now once we have the vector perpendicular to both the vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j}we will divide the vector by its modulus hence we get a unit vector.

Complete step-by-step answer:
Now consider the two given vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j}
Any vector perpendicular to a1i^+a2j^+a3k^{{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b1i^+b2j^+b3k^{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} is given by (a1i^+a2j^+a3k^)×(b1i^+b2j^+b3k^)({{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k})\times ({{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k})and that is the cross product of two vectors
And the cross product of the two vectors a1i^+a2j^+a3k^{{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b1i^+b2j^+b3k^{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} is given by determinant of matrix [i^j^k^ a1a2a3 b1b2b3 ]\left[ \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right].
Hence the vector perpendicular to a1i^+a2j^+a3k^{{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b1i^+b2j^+b3k^{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} is given by
i^j^k^ 111 101 \left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 1 & 1 & 1 \\\ 1 & 0 & 1 \\\ \end{matrix} \right|
Now let us open the determinant with respect to first row
i^[1(1)0(1)]j^[1(1)1(1)]+k^[1(0)(1)(1)] =i^k^ \begin{aligned} & \hat{i}[1(1)-0(1)]-\hat{j}[1(1)-1(1)]+\hat{k}[1(0)-(1)(1)] \\\ & =\hat{i}-\hat{k} \\\ \end{aligned}
Let us call this vector as c\vec{c}
c=i^k^\vec{c}=\hat{i}-\hat{k}
Hence now we have the vector perpendicular to both the vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j} is c=i^k^\vec{c}=\hat{i}-\hat{k}
Now since we need a unit vector perpendicular to both the vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j}
Hence to make c=i^k^\vec{c}=\hat{i}-\hat{k} we will have to divide the vector by its modulus. Modulus of a vector is the distance of the vector from origin
Now modulus of a vector a1i^+a2j^+a3k^{{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} is given by the formula a12+a22+a32\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}
Hence using this we get modulus of c=i^k^\vec{c}=\hat{i}-\hat{k} as c=12+(1)2=2|\vec{c}|=\sqrt{{{1}^{2}}+{{(-1)}^{2}}}=\sqrt{2}
Hence now we divide the vector with its modulus and hence the vector obtained is a unit vector
cc=i^k^2=12i^12k^\dfrac{{\vec{c}}}{|\vec{c}|}=\dfrac{\hat{i}-\hat{k}}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\hat{i}-\dfrac{1}{\sqrt{2}}\hat{k}
Hence we have the unit vector perpendicular to both the vectors a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b==i^+j^\vec{b}==\hat{i}+\hat{j}is 12i^12k^\dfrac{1}{\sqrt{2}}\hat{i}-\dfrac{1}{\sqrt{2}}\hat{k}.

Note: Now remember that cross product of a1i^+a2j^+a3k^{{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b1i^+b2j^+b3k^{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} is given by determinant of matrix [i^j^k^ a1a2a3 b1b2b3 ]\left[ \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right] not to be confused with dot product which is given by a1b1+a2b2+c1c2{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{c}_{1}}{{c}_{2}} .