Solveeit Logo

Question

Question: wo masses m<sub>1</sub> and m<sub>2</sub> (m<sub>1</sub> \> m<sub>2</sub>) are connected by massless...

wo masses m1 and m2 (m1 > m2) are connected by massless flexible and inextensible string passed over massless and frictionless pulley. The acceleration of centre of mass is

A

(m1m2m1+m2)2g\left( \frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } \right) ^ { 2 } g

B

m1m2m1+m2g\frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } g

C

m1+m2m1m2g\frac { m _ { 1 } + m _ { 2 } } { m _ { 1 } - m _ { 2 } } g

D

Zero

Answer

(m1m2m1+m2)2g\left( \frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } \right) ^ { 2 } g

Explanation

Solution

Acceleration of each mass =a=(m1m2m1+m2)g= a = \left( \frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } \right) g

Now acceleration of centre of mass of the system

Acm=m1a1+m1a2m1+m2A _ { c m } = \frac { m _ { 1 } \overrightarrow { a _ { 1 } } + m _ { 1 } \overrightarrow { a _ { 2 } } } { m _ { 1 } + m _ { 2 } }

As both masses move with same acceleration but in opposite direction so a1=a2\overrightarrow { a _ { 1 } } = - \overrightarrow { a _ { 2 } } = a (let)

Acm=m1am2am1+m2\therefore A _ { c m } = \frac { m _ { 1 } a - m _ { 2 } a } { m _ { 1 } + m _ { 2 } }

=(m1m2m1+m2)×(m1m2m1+m2)×g= \left( \frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } \right) \times \left( \frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } \right) \times g

=(m1m2m1+m2)2×g= \left( \frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } \right) ^ { 2 } \times g