Question
Question: Without using trigonometric tables, evaluate the following: \(\sec {41^ \circ }.\sin {49^ \circ } ...
Without using trigonometric tables, evaluate the following:
sec41∘.sin49∘+cos49∘.cosec41∘−32(tan20∘.tan60∘.tan70∘)
Solution
Hint: Use the trigonometric identities-
cosec(90∘−A)=secA,tanA=cot(90∘−A) and then solve the question.
We have been given, sec41∘.sin49∘+cos49∘.cosec41∘−32(tan20∘.tan60∘.tan70∘).
Complete step-by-step answer:
Now using the trigonometric identities-
sec(41∘)=cosec(90∘−41∘) cosec(41∘)=sec(90∘−41∘) tan(70∘)=cot(90∘−70)
So, the expression will be transformed in-
cosec(90∘−41∘).sin49∘+cos49∘.sec(90∘−41∘)−32(tan20∘.tan60∘.cot(90∘−70∘)) =cosec49∘.sin49∘+cos49∘sec49∘−32(tan20∘.tan60∘.cot(20∘)−(1)
Now, we know-
cosecA=sinA1,secA=cosA1,cotA=tanA1, using these trigonometric formulas in equation (1), we get-
=sin49∘1.sin49∘+cos49∘.cos49∘1−32(tan20∘.tan60∘.tan20∘1) =1+1−32(tan60∘) =1+1−32.3 =2−2 =0
Hence, the value of the given expression is 0.
Note: Whenever such types of question appear, then wrote down the expression given in the question and then try to convert it into a simplified form by using trigonometric formulas and then by using cosecA=sinA1,secA=cosA1,cotA=tanA1in equation (1), we will get =1+1−32(tan60∘), solving it further we get the answer as 0.