Solveeit Logo

Question

Question: Without using the trigonometric tables find the value of the following expressions: \(\dfrac{{\sec...

Without using the trigonometric tables find the value of the following expressions:
sec(900 - θ)cosecθ - tan(900 - θ)cotθ + cos2250 + cos26503tan270.tan630\dfrac{{\sec ({{90}^0}{\text{ - }}\theta {\text{)cosec}}\theta {\text{ - tan(9}}{{\text{0}}^0}{\text{ - }}\theta )\cot \theta {\text{ + co}}{{\text{s}}^2}{{25}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\tan {{63}^0}}}

Explanation

Solution

Hint: To solve this question we will use the trigonometric properties like tanθ = 1cotθ\tan \theta {\text{ = }}\dfrac{1}{{\cot \theta }}, secθ = 1cosθ\sec \theta {\text{ = }}\dfrac{1}{{\cos \theta }} and properties related to angles like cos(900 θ) = sinθ\cos ({90^0} - {\text{ }}\theta {\text{) = sin}}\theta . Now, we will use some trigonometric properties to solve the given question without using the trigonometric table.
From trigonometry, we know that cos(900 θ) = sinθ\cos ({90^0} - {\text{ }}\theta {\text{) = sin}}\theta , sec(900 θ) = cosecθ\sec ({90^0} - {\text{ }}\theta {\text{) = cosec}}\theta ,tan(900 θ) = cotθ\tan ({90^0} - {\text{ }}\theta {\text{) = cot}}\theta . Also, tanθ = 1cotθ\tan \theta {\text{ = }}\dfrac{1}{{\cot \theta }}. We will use all these properties to solve the given question

Complete step-by-step solution -

Now, we are given sec(900 - θ)cosecθ - tan(900 - θ)cotθ + cos2250 + cos26503tan270.tan630\dfrac{{\sec ({{90}^0}{\text{ - }}\theta {\text{)cosec}}\theta {\text{ - tan(9}}{{\text{0}}^0}{\text{ - }}\theta )\cot \theta {\text{ + co}}{{\text{s}}^2}{{25}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\tan {{63}^0}}}. So, it can be written as,
cosecθcosecθ - cotθcotθ + cos2250 + cos26503tan270.tan630\dfrac{{\cos ec\theta {\text{cosec}}\theta {\text{ - cot}}\theta \cot \theta {\text{ + co}}{{\text{s}}^2}{{25}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\tan {{63}^0}}}
\Rightarrow cosec2θ - cot2θ + cos2(900 - 650) + cos26503tan270.tan(900 - 270)\dfrac{{\cos e{c^2}\theta {\text{ - co}}{{\text{t}}^2}\theta {\text{ + co}}{{\text{s}}^2}({{90}^0}{\text{ - 6}}{{\text{5}}^0}{\text{) + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\tan ({{90}^0}{\text{ - 2}}{{\text{7}}^0})}}
\Rightarrow cosec2θ - cot2θ + sin2650 + cos26503tan270.cot270\dfrac{{\cos e{c^2}\theta {\text{ - co}}{{\text{t}}^2}\theta {\text{ + si}}{{\text{n}}^2}{\text{6}}{{\text{5}}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\cot {\text{2}}{{\text{7}}^0}}}
Now, we know that sin2θ + cos2θ = 1{\sin ^2}\theta {\text{ + co}}{{\text{s}}^2}\theta {\text{ = 1}} and cosec2θ - cot2θ = 1\cos e{c^2}\theta {\text{ - co}}{{\text{t}}^2}\theta {\text{ = 1}}. Therefore, applying these identities in the above equation, we get
cosec2θ - cot2θ + sin2650 + cos26503tan270.cot270\dfrac{{\cos e{c^2}\theta {\text{ - co}}{{\text{t}}^2}\theta {\text{ + si}}{{\text{n}}^2}{\text{6}}{{\text{5}}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\cot {\text{2}}{{\text{7}}^0}}} = 1 + 13tan270.cot270\dfrac{{1{\text{ + }}{\text{1}}}}{{3\tan {{27}^0}.\cot {{27}^0}}}
As, tanθ = 1cotθ\tan \theta {\text{ = }}\dfrac{1}{{\cot \theta }}. So,
cosec2θ - cot2θ + sin2650 + cos26503tan270.cot270\dfrac{{\cos e{c^2}\theta {\text{ - co}}{{\text{t}}^2}\theta {\text{ + si}}{{\text{n}}^2}{\text{6}}{{\text{5}}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\cot {\text{2}}{{\text{7}}^0}}} = 1 + 13 = 23\dfrac{{1{\text{ + 1}}}}{3}{\text{ = }}\dfrac{2}{3}
Therefore, sec(900 - θ)cosecθ - tan(900 - θ)cotθ + cos2250 + cos26503tan270.tan630\dfrac{{\sec ({{90}^0}{\text{ - }}\theta {\text{)cosec}}\theta {\text{ - tan(9}}{{\text{0}}^0}{\text{ - }}\theta )\cot \theta {\text{ + co}}{{\text{s}}^2}{{25}^0}{\text{ + co}}{{\text{s}}^2}{{65}^0}}}{{3\tan {{27}^0}.\tan {{63}^0}}} = 23\dfrac{2}{3}

Note: When we come up with such types of questions, we have to use trigonometric identities and properties to solve the question. In the above question we have use the identity cos(900 θ) = sinθ\cos ({90^0} - {\text{ }}\theta {\text{) = sin}}\theta which is only applicable when the angle θ\theta is less than 900{90^0} and lies in the first quadrant. If the angle is greater than 900{90^0}, then we have to use a different formula, which can be derived from the formula cos (x + y) = cosxcosy – sinxsiny. Keeping angle in place of y and the reference angle (900{90^0}in the first quadrant) in place of x, any formula for any quadrant can be found.