Question
Question: Without expanding, prove that: \(\left| {\begin{array}{*{20}{c}} {x + y}&{y + z}&{z + x} \\\ ...
Without expanding, prove that:
\left| {\begin{array}{*{20}{c}}
{x + y}&{y + z}&{z + x} \\\
z&x&y \\\
1&1&1
\end{array}} \right| = 0
Explanation
Solution
Hint: Here, we will apply the properties of determinants to simplify the given determinant.
Complete step-by-step answer:
Given: \left| {\begin{array}{*{20}{c}}
{x + y}&{y + z}&{z + x} \\\
z&x&y \\\
1&1&1
\end{array}} \right| = 0
L.H.S=
\left| {\begin{array}{*{20}{c}}
{x + y}&{y + z}&{z + x} \\\
z&x&y \\\
1&1&1
\end{array}} \right|
Applying row operations;
i.e., R1→R1+R2
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x + y + z}&{x + y + z}&{y + z + x} \\\
z&x&y \\\
1&1&1
\end{array}} \right|
Take (x+y+z) common from first row