Solveeit Logo

Question

Question: Within what respective limits must \[\dfrac{A}{2}\] lies when 1). \[2\sin \dfrac{A}{2} = \sqrt {1 ...

Within what respective limits must A2\dfrac{A}{2} lies when
1). 2sinA2=1+sinA+1sinA2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
2). 2sinA2=1+sinA+1sinA2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
3). 2sinA2=1+sinA1sinA2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} and
4). 2cosA2=1+sinA1sinA2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A}

Explanation

Solution

To solve this question we have to convert sinA\sin A into the half-angle formula and put the values in the options and simplify all those. If the right-hand side is equal to the left-hand side then that option is the correct answer. Use the trigonometry property in the place of 11 then try to make it a perfect square and take them outside of the root.

Complete step-by-step solution:
Given,
Few options are given
2sinA2=1+sinA+1sinA2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
2sinA2=1+sinA+1sinA2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
2sinA2=1+sinA1sinA2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} and
2cosA2=1+sinA1sinA2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A}
To find,
which option is correct;
Here, all these options take a look to the right hand side then we observe that only 1+sinA\sqrt {1 + \sin A} and 1sinA\sqrt {1 - \sin A} are there. All other things are the different mathematical operators are used at different operators.
So, applying formula on only 1+sinA\sqrt {1 + \sin A} and 1sinA\sqrt {1 - \sin A}
First we solve,
1+sinA\sqrt {1 + \sin A}
Let this be aa
a=1+sinAa = \sqrt {1 + \sin A}
On putting the identity 1=sin2A2+cos2A21 = {\sin ^2}\dfrac{A}{2} + {\cos ^2}\dfrac{A}{2} and half angle of sinA\sin A
a=sin2A2+cos2A2+2sinA2cosA2a = \sqrt {{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} + 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} (sinA=2sinA2cosA2\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2})
On making the terms in the form of (a+b)2{(a + b)^2}
a=(sinA2+cosA2)2a = \sqrt {{{(\sin \dfrac{A}{2} + \cos \dfrac{A}{2})}^2}}
Taking the terms outside of bracket
a=sinA2+cosA2a = \sin \dfrac{A}{2} + \cos \dfrac{A}{2}
Again put the value of aa
1+sinA=sinA2+cosA2\sqrt {1 + \sin A} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} …………………………(i)
Now we solve
1sinA\sqrt {1 - \sin A}
Let, this be bb
b=1sinAb = \sqrt {1 - \sin A}
On putting the identity 1=sin2A2+cos2A21 = {\sin ^2}\dfrac{A}{2} + {\cos ^2}\dfrac{A}{2} and half angle of sinA\sin A
b=sin2A2+cos2A22sinA2cosA2b = \sqrt {{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} (sinA=2sinA2cosA2\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2})
On making the terms in the form of (ab)2{(a - b)^2}
b=(sinA2cosA2)2b = \sqrt {{{(\sin \dfrac{A}{2} - \cos \dfrac{A}{2})}^2}}
Taking the terms outside of bracket
b=sinA2cosA2b = \sin \dfrac{A}{2} - \cos \dfrac{A}{2}
Again put the value of aa
1sinA=sinA2cosA2\sqrt {1 - \sin A} = \sin \dfrac{A}{2} - \cos \dfrac{A}{2} ……………………(ii)
Option 1.
2sinA2=1+sinA+1sinA2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
Putting the values form equation (i) and (ii)
2sinA2=sinA2+cosA2+sinA2cosA22\sin \dfrac{A}{2} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} + \sin \dfrac{A}{2} - \cos \dfrac{A}{2}
On further solving
2sinA2=2sinA22\sin \dfrac{A}{2} = 2\sin \dfrac{A}{2}
Option 1 is the correct answer
Option 2.
2sinA2=1+sinA+1sinA2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
Putting the values form equation (i) and (ii)
2sinA2=(sinA2+cosA2)+sinA2cosA22\sin \dfrac{A}{2} = - (\sin \dfrac{A}{2} + \cos \dfrac{A}{2}) + \sin \dfrac{A}{2} - \cos \dfrac{A}{2}
On further solving
2sinA2=2cosA22\sin \dfrac{A}{2} = - 2\cos \dfrac{A}{2}
Option 2 is not the correct answer
Option 3.
2sinA2=1+sinA1sinA2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A}
Putting the values form equation (i) and (ii)
2sinA2=sinA2+cosA2(sinA2cosA2)2\sin \dfrac{A}{2} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} - (\sin \dfrac{A}{2} - \cos \dfrac{A}{2})
On further solving
2sinA2=2cosA22\sin \dfrac{A}{2} = 2\cos \dfrac{A}{2}
Option 3 is not the correct answer but the answer is matched with option 4 so option 4 is also the correct answer
Final answer:
Option 1 and option 4 both are correct.

Note: To solve these types of questions we have to use the property of trigonometry and must know all the identity and formulas of trigonometry and have a good practice to use all the formulas. In this particular question, we use two formulas of trigonometry. Make the term inside the root a perfect square.