Solveeit Logo

Question

Question: With usual notations, in $\triangle ABC$ if a = 2, b = 3, c = 5 and $\frac{cos A}{a}+\frac{cos B}{b}...

With usual notations, in ABC\triangle ABC if a = 2, b = 3, c = 5 and cosAa+cosBb+cosCc=k+730\frac{cos A}{a}+\frac{cos B}{b}+\frac{cos C}{c}=\frac{k+7}{30} then k =

Answer

12

Explanation

Solution

The given problem involves a triangle ABC with side lengths a=2, b=3, and c=5. We need to find the value of k from the given equation:

cosAa+cosBb+cosCc=k+730\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{k+7}{30}

First, let's analyze the given side lengths. For a triangle to be formed, the triangle inequality must hold: the sum of the lengths of any two sides must be greater than the length of the third side. Here, a+b = 2+3 = 5. Since c=5, we have a+b=c. This indicates a degenerate triangle, where the three vertices are collinear. Specifically, if A and B are the endpoints of the side c (length 5), then C must lie on the line segment AB such that AC=b=3 and CB=a=2. In this configuration, the angle C (opposite side c) is 180180^\circ, and angles A and B are 00^\circ.

We can use the cosine rule for each angle: cosA=b2+c2a22bc\cos A = \frac{b^2+c^2-a^2}{2bc} cosB=a2+c2b22ac\cos B = \frac{a^2+c^2-b^2}{2ac} cosC=a2+b2c22ab\cos C = \frac{a^2+b^2-c^2}{2ab}

Substitute these into the expression cosAa+cosBb+cosCc\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}: cosAa+cosBb+cosCc=1a(b2+c2a22bc)+1b(a2+c2b22ac)+1c(a2+b2c22ab)\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c} = \frac{1}{a}\left(\frac{b^2+c^2-a^2}{2bc}\right) + \frac{1}{b}\left(\frac{a^2+c^2-b^2}{2ac}\right) + \frac{1}{c}\left(\frac{a^2+b^2-c^2}{2ab}\right) To combine these terms, we find a common denominator, which is 2abc2abc: =b2+c2a22abc+a2+c2b22abc+a2+b2c22abc= \frac{b^2+c^2-a^2}{2abc} + \frac{a^2+c^2-b^2}{2abc} + \frac{a^2+b^2-c^2}{2abc} =(b2+c2a2)+(a2+c2b2)+(a2+b2c2)2abc= \frac{(b^2+c^2-a^2) + (a^2+c^2-b^2) + (a^2+b^2-c^2)}{2abc} =a2+b2+c22abc= \frac{a^2+b^2+c^2}{2abc} This is a general identity for any triangle.

Now, substitute the given values a=2, b=3, c=5 into this identity: a2=22=4a^2 = 2^2 = 4 b2=32=9b^2 = 3^2 = 9 c2=52=25c^2 = 5^2 = 25 a2+b2+c2=4+9+25=38a^2+b^2+c^2 = 4+9+25 = 38

2abc=2×2×3×5=602abc = 2 \times 2 \times 3 \times 5 = 60

So, the expression becomes: cosAa+cosBb+cosCc=3860=1930\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c} = \frac{38}{60} = \frac{19}{30}

We are given that cosAa+cosBb+cosCc=k+730\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{k+7}{30}. Equating the two expressions: 1930=k+730\frac{19}{30} = \frac{k+7}{30} Multiply both sides by 30: 19=k+719 = k+7 Solve for k: k=197k = 19 - 7 k=12k = 12