Solveeit Logo

Question

Question: With usual notations, if in a triangle ABC,\(\dfrac{{b + c}}{{11}} = \dfrac{{c + a}}{{12}} = \dfrac{...

With usual notations, if in a triangle ABC,b+c11=c+a12=a+b13\dfrac{{b + c}}{{11}} = \dfrac{{c + a}}{{12}} = \dfrac{{a + b}}{{13}} then cosA:cosB:cosC\cos A:\cos B:\cos Cis equal to
A) (a) 7:19:25\left( a \right){\text{ 7:19:25}}
B) (b) 19:7:25\left( b \right){\text{ 19:7:25}}
C) (c) 12:14:20\left( c \right){\text{ 12:14:20}}
D) (d) 19:25:20\left( d \right){\text{ 19:25:20}}

Explanation

Solution

For solving this type of question, we will assume the ratio be any arbitrary constant and from there we will calculate the sides of a triangle. And after that putting the values in the ratios we have to calculate, we will get the required ratios.

Complete step by step solution:
Let us assume each ratio bekk, then we have the equation written as
b+c=11k, c+a=12k, a+b=13k\Rightarrow b + c = 11k,{\text{ }}c + a = 12k,{\text{ }}a + b = 13k
Now from these three equations, on adding all the three equations, we will get
2(a+b+c)=36k\Rightarrow 2\left( {a + b + c} \right) = 36k
Taking the 22to the right side, we get
a+b+c=18k\Rightarrow a + b + c = 18k
Now using the above equation, after calculating the values we get
a=7k, b = 6k, c = 5k\Rightarrow a = 7k,{\text{ b = 6k, c = 5k}}
So we have all the values of the term.
Now we will calculate the values of cosA:cosB:cosC\cos A:\cos B:\cos C
So the values cosA\cos Awill be equals to
b2+c2a22bc\Rightarrow \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}
On putting the values, we get
36k2+25k249k260k2\Rightarrow \dfrac{{36{k^2} + 25{k^2} - 49{k^2}}}{{60{k^2}}}
And on calculating, we get
12k260k2\Rightarrow \dfrac{{12{k^2}}}{{60{k^2}}}
And on doing the lowest common factor, we get
cosA=15\Rightarrow \cos A = \dfrac{1}{5}
So the values cosB\cos Bwill be equals to
a2+c2b22ac\Rightarrow \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}
On putting the values, we get
49k2+25k236k270k2\Rightarrow \dfrac{{49{k^2} + 25{k^2} - 36{k^2}}}{{70{k^2}}}
And on calculating, we get
38k270k2\Rightarrow \dfrac{{38{k^2}}}{{70{k^2}}}
And on doing the lowest common factor, we get
cosB=1935\Rightarrow \cos B = \dfrac{{19}}{{35}}
So the values cosC\cos Cwill be equals to
a2+b2c22ab\Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}
On putting the values, we get
49k2+36k225k284k2\Rightarrow \dfrac{{49{k^2} + 36{k^2} - 25{k^2}}}{{84{k^2}}}
And on calculating, we get
60k284k2\Rightarrow \dfrac{{60{k^2}}}{{84{k^2}}}
And on doing the lowest common factor, we get
cosA=57\Rightarrow \cos A = \dfrac{5}{7}
Therefore, the ratios cosA:cosB:cosC\cos A:\cos B:\cos Cwill be
15:1935:57\Rightarrow \dfrac{1}{5}:\dfrac{{19}}{{35}}:\dfrac{5}{7}
So it can also be written as
7:19:25\Rightarrow 7:19:25

Hence, the option (a)\left( a \right)will be correct.

Note:
For solving this type of question, we should always assume the ratios be any constant and then go for the solution of it. In this type of question if our linear equations are correct then we can easily find out the ratios. And in this way, we can easily solve it.