Solveeit Logo

Question

Mathematics Question on Differential Equations

With the help of suitable transform of the independent variable, the differential equation
xd2ydx2+2dydx=6x+1xx\frac{d^2y}{dx^2}+\frac{2dy}{dx}=6x+\frac{1}{x} reduces to the form:

A

d2ydt2+2dydt=6e2t+1\frac{d^2y}{dt^2}+2\frac{dy}{dt}=6e^{2t}+1

B

d2ydt2+dydt=6e2t+1\frac{d^2y}{dt^2}+\frac{dy}{dt}=6e^{2t}+1

C

d2ydt2=62t+logt\frac{d^2y}{dt^2}=6^{2t}+logt

D

d2ydt2=6et+t\frac{d^2y}{dt^2}=6e^t+t

Answer

d2ydt2+dydt=6e2t+1\frac{d^2y}{dt^2}+\frac{dy}{dt}=6e^{2t}+1

Explanation

Solution

The correct option is (B): d2ydt2+dydt=6e2t+1\frac{d^2y}{dt^2}+\frac{dy}{dt}=6e^{2t}+1