Solveeit Logo

Question

Question: With respect to a rectangular cartesian coordinate system, three vectors are expressed as \(\overri...

With respect to a rectangular cartesian coordinate system, three vectors are expressed as

a=4i^j^\overrightarrow{a} = 4\widehat{i} - \widehat{j}, b=3i^+2j^\overrightarrow{b} = - 3\widehat{i} + 2\widehat{j} and c=k^\overrightarrow{c} = - \widehat{k}

Where i^,j^,k^\widehat{i},\widehat{j},\widehat{k}are unit vectors, along the X, Y and Z-axis respectively. The unit vectors r^\widehat{r}along the direction of sum of these vector is

A

r^=13(i^+j^k^)\widehat{r} = \frac{1}{\sqrt{3}}(\widehat{i} + \widehat{j} - \widehat{k})

B

r^=12(i^+j^k^)\widehat{r} = \frac{1}{\sqrt{2}}(\widehat{i} + \widehat{j} - \widehat{k})

C

r^=13(i^j^+k^)\widehat{r} = \frac{1}{3}(\widehat{i} - \widehat{j} + \widehat{k})

D

r^=12(i^+j^+k^)\widehat{r} = \frac{1}{\sqrt{2}}(\widehat{i} + \widehat{j} + \widehat{k})

Answer

r^=13(i^+j^k^)\widehat{r} = \frac{1}{\sqrt{3}}(\widehat{i} + \widehat{j} - \widehat{k})

Explanation

Solution

r=a+b+c=4i^j^3i^+2j^k^=i^+j^k^\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 4\widehat{i} - \widehat{j} - 3\widehat{i} + 2\widehat{j} - \widehat{k} = \widehat{i} + \widehat{j} - \widehat{k}

r^=rr=i^+j^k^12+12+(1)2=i^+j^k^3\widehat{r} = \frac{\overrightarrow{r}}{|r|} = \frac{\widehat{i} + \widehat{j} - \widehat{k}}{\sqrt{1^{2} + 1^{2} + ( - 1)^{2}}} = \frac{\widehat{i} + \widehat{j} - \widehat{k}}{\sqrt{3}}