Solveeit Logo

Question

Question: With\[11,{\rm{ }}13\],\[\sqrt {290 + 143\sqrt 3 } \] as sides (A) no triangle exists (B) triangl...

With11,1311,{\rm{ }}13,290+1433\sqrt {290 + 143\sqrt 3 } as sides
(A) no triangle exists
(B) triangle exists with an angle 2π3\dfrac{{2\pi }}{3}
(C) triangle exists with an angle 3π4\dfrac{{3\pi }}{4}
(D) triangle exists with an angle 5π6\dfrac{{5\pi }}{6}

Explanation

Solution

Hint : First remind the trigonometric formula cosθ=a2  + b2 c22ab\cos \theta = \dfrac{{{a^{2\;}} + {\text{ }}{b^2}-{\text{ }}{c^2}}}{{2ab}}for the cosine of angle of side with the sides of triangle. Then make the calculations carefully and take the particular solution of the trigonometric equation in the first four quadrants.

Complete step-by-step answer :
With11,1311,{\rm{ }}13,290+1433\sqrt {290 + 143\sqrt 3 } as sides.
When we are solving this type of question, we need to follow the steps provided in the hint part above.
Let a=11,b=13a = 11,\,\,b = 13
c = 290+1433\sqrt {290 + 143\sqrt 3 }
Now check

a+b=24c b+c=36.18a a+c=34.18ba + b = 24 \ge c\\\ b + c = 36.18 \ge a\\\ a + c = 34.18 \ge b

Mean triangle is possible. Now we are going to check the angle of triangle by below formula
Let θ\theta is the angle of triangle
\Rightarrow \cos \theta = $$$$\dfrac{{{a^{2\;}} + {\rm{ }}{b^2}-{\rm{ }}{c^2}}}{{2ab}}

=11+13+290+14332×11×13 =29029014332×11×13 =1432×1433 cosθ=32 = \dfrac{{11 + 13 + \sqrt {290 + 143\sqrt 3 } }}{{2 \times 11 \times 13}}\\\ = \dfrac{{290 - 290 - 143\sqrt 3 }}{{2 \times 11 \times 13}}\\\ = \dfrac{{ - 143}}{{2 \times 143}}\sqrt 3 \\\ \cos \theta = \dfrac{{ - \sqrt 3 }}{2}

As θ\theta if the angle of a triangle so θ\theta can’t be greater than 1800{180^0}
so θ\theta in 2nd quadrant

cosθ=cos(ππ6) θ=(ππ6) θ=5π6\Rightarrow \cos \theta = \cos \left( {\pi - \dfrac{\pi }{6}} \right)\\\ \Rightarrow \theta = \left( {\pi - \dfrac{\pi }{6}} \right)\\\ \Rightarrow \theta = \dfrac{{5\pi }}{6}

So, the correct answer is “Option D”.

Note : First is take care of the calculations and then make the calculations in the trigonometric formula by substituting values in the formula. Then take care that the solution of the trigonometric equation must be right according to the equation and lies between 00 and 2π2\pi .