Solveeit Logo

Question

Physics Question on Current electricity

Wires AA and BB have resistivities ρA\rho_{A} and ρB\rho_{B} , (ρB=2ρA)(\rho_{B}=2\rho_{A}) and have lengths lAl_{A} and lBl_{B} . If the diameter of the wire BB is twice that of AA and the two wires have same resistance, then lBl4\frac{l_{B}}{l_{4}} is

A

2

B

1

C

12\frac{1}{2}

D

14\frac{1}{4}

Answer

2

Explanation

Solution

The given, ρB=2ρA,RA=RB=R\rho_{B}=2 \rho_{A}, R_{A}=R_{B}=R Let, rA=rr_{A}=r rB=2rr_{B}=2 r According to formula, RA=ρAlAπrA2...(i)R_{A} =\rho_{A} \cdot \frac{l_{A}}{\pi r_{A}^{2}} \,\,\,...(i) RB=ρBlBπrB2...(ii)R_{B} =\rho_{B} \cdot \frac{l_{B}}{\pi r_{B}^{2}} \,\,\,...(ii) RA=RB\because R_{A} =R_{B} ρAlAπrA2=ρBlBπrB2\rho_{A} \cdot \frac{l_{A}}{\pi r_{A}^{2}}=\rho_{B} \cdot \frac{l_{B}}{\pi r_{B}^{2}} lBlA=rB2rA2ρAρB\frac{l_{B}}{l_{A}}=\frac{r_{B}^{2}}{r_{A}^{2}} \cdot \frac{\rho_{A}}{\rho_{B}} =(2r)2r2ρA2ρB=\frac{(2 r)^{2}}{r^{2}} \cdot \frac{\rho_{A}}{2 \rho_{B}} =4r2r2ρA2ρA=\frac{4 r^{2}}{r^{2}} \cdot \frac{\rho_{A}}{2 \rho_{A}} =42=2=\frac{4}{2}=2