Solveeit Logo

Question

Question: Wire AB used in the given metre bridge has uniform dimension and its resistivity at distance x from ...

Wire AB used in the given metre bridge has uniform dimension and its resistivity at distance x from end A varies as ρ(x)=ρ0(1kx)2\rho(x) = \frac{\rho_0}{(1-kx)^2} where x is in metre and ρ0=5×103\rho_0 = 5 \times 10^{-3} ohm-m. If P=2ΩP = 2\Omega and Q=9ΩQ = 9\Omega, then zero deflection point C is 40 cm from end A. The value of 3k is _______ m1m^{-1}.

Answer

2 m1m^{-1}

Explanation

Solution

Solution:

  1. For a metre bridge the balanced condition gives:

    RACRCB=PQ=29.\frac{R_{AC}}{R_{CB}}=\frac{P}{Q}=\frac{2}{9}.
  2. Since the resistivity varies as

    ρ(x)=ρ0(1kx)2,\rho(x)=\frac{\rho_0}{(1-kx)^2},

    the resistance of a segment from x=ax=a to x=bx=b (with constant cross‐section AA) is

    R=abρ(x)Adx=ρ0Aabdx(1kx)2.R = \int_{a}^{b}\frac{\rho(x)}{A}\,dx = \frac{\rho_0}{A}\int_a^b\frac{dx}{(1-kx)^2}.
  3. Using the substitution u=1kxu=1-kx, du=kdxdu=-k\,dx, we get

    dx(1kx)2=1k[11kx].\int\frac{dx}{(1-kx)^2} = \frac{1}{k}\left[\frac{1}{1-kx}\right].
  4. Hence, the resistances are:

    • For ACAC (from x=0x=0 to x=0.4x=0.4): RAC=ρ0A1k[110.4k1].R_{AC}=\frac{\rho_0}{A}\cdot\frac{1}{k}\left[\frac{1}{1-0.4k}-1\right].
    • For CBCB (from x=0.4x=0.4 to x=1x=1): RCB=ρ0A1k[11k110.4k].R_{CB}=\frac{\rho_0}{A}\cdot\frac{1}{k}\left[\frac{1}{1-k}-\frac{1}{1-0.4k}\right].
  5. Taking the ratio:

    RACRCB=110.4k111k110.4k.\frac{R_{AC}}{R_{CB}} = \frac{\frac{1}{1-0.4k}-1}{\frac{1}{1-k}-\frac{1}{1-0.4k}}.
  6. Simplify the numerator:

    110.4k1=1(10.4k)10.4k=0.4k10.4k.\frac{1}{1-0.4k}-1 = \frac{1-(1-0.4k)}{1-0.4k} = \frac{0.4k}{1-0.4k}.
  7. Simplify the denominator:

    11k110.4k=(10.4k)(1k)(1k)(10.4k)=0.6k(1k)(10.4k).\frac{1}{1-k}-\frac{1}{1-0.4k} = \frac{(1-0.4k)-(1-k)}{(1-k)(1-0.4k)} = \frac{0.6k}{(1-k)(1-0.4k)}.
  8. Therefore,

    RACRCB=0.4k10.4k0.6k(1k)(10.4k)=0.4(1k)0.6=23(1k).\frac{R_{AC}}{R_{CB}} = \frac{\frac{0.4k}{1-0.4k}}{\frac{0.6k}{(1-k)(1-0.4k)}} = \frac{0.4\,(1-k)}{0.6} = \frac{2}{3}(1-k).
  9. Set equal to 29\frac{2}{9}:

    23(1k)=29(1k)=13k=23.\frac{2}{3}(1-k)=\frac{2}{9} \quad \Longrightarrow \quad (1-k)=\frac{1}{3} \quad \Longrightarrow \quad k=\frac{2}{3}.
  10. Requested value is 3k3k:

    3k=323=2  m1.3k= 3\cdot\frac{2}{3}=2\; \text{m}^{-1}.

Explanation (minimal):

  1. Write resistance integrals for segments AC and CB.

  2. Compute integrals using substitution.

  3. Take ratio and simplify to get 23(1k)=29\frac{2}{3}(1-k)=\frac{2}{9}.

  4. Solve for kk then calculate 3k3k.