Solveeit Logo

Question

Question: Wire $AB$ is moved with a velocity 2 m/s. Wire is kept near a long current carrying conductor, as sh...

Wire ABAB is moved with a velocity 2 m/s. Wire is kept near a long current carrying conductor, as shown. Emf induced in the wire is

Answer

2 x 10^{-6} ln(4) V

Explanation

Solution

The problem involves calculating the motional electromotive force (EMF) induced in a conductor moving in a non-uniform magnetic field.

  1. Magnetic Field due to the Long Wire:
    A long straight current-carrying conductor produces a magnetic field given by the formula: B=μ0I2πrB = \frac{\mu_0 I}{2 \pi r} where μ0=4π×107 T m/A\mu_0 = 4\pi \times 10^{-7} \text{ T m/A} is the permeability of free space, II is the current (5 A), and rr is the perpendicular distance from the wire.
    Using the right-hand thumb rule, for an upward current, the magnetic field to the right of the wire is directed into the page.

  2. Motional EMF:
    The wire segment AB has a length L=3 mL = 3 \text{ m} and is moving with a velocity v=2 m/sv = 2 \text{ m/s} upwards. The wire A is at a distance r1=1 mr_1 = 1 \text{ m} from the long wire, and wire B is at r2=r1+L=1+3=4 mr_2 = r_1 + L = 1 + 3 = 4 \text{ m} from the long wire.
    Since the magnetic field BB depends on the distance rr, it is not uniform along the length of the wire AB. Therefore, we must integrate to find the total induced EMF.
    Consider a small segment drdr of the wire AB at a distance rr from the long current-carrying wire. The magnetic field at this segment is B(r)=μ0I2πrB(r) = \frac{\mu_0 I}{2 \pi r}.
    The velocity v\vec{v} is perpendicular to the magnetic field B\vec{B} (velocity is vertical, magnetic field is into the page) and also perpendicular to the length element drd\vec{r} of the wire (velocity is vertical, drd\vec{r} is horizontal).
    The induced EMF across this small segment is dE=B(r)vdrd\mathcal{E} = B(r) v dr.
    The total induced EMF across the wire AB is the integral of dEd\mathcal{E} from r1r_1 to r2r_2: E=r1r2B(r)vdr\mathcal{E} = \int_{r_1}^{r_2} B(r) v dr Substitute B(r)B(r): E=r1r2(μ0I2πr)vdr\mathcal{E} = \int_{r_1}^{r_2} \left(\frac{\mu_0 I}{2 \pi r}\right) v dr E=μ0Iv2πr1r21rdr\mathcal{E} = \frac{\mu_0 I v}{2 \pi} \int_{r_1}^{r_2} \frac{1}{r} dr E=μ0Iv2π[lnr]r1r2\mathcal{E} = \frac{\mu_0 I v}{2 \pi} [\ln r]_{r_1}^{r_2} E=μ0Iv2π(lnr2lnr1)\mathcal{E} = \frac{\mu_0 I v}{2 \pi} (\ln r_2 - \ln r_1) E=μ0Iv2πln(r2r1)\mathcal{E} = \frac{\mu_0 I v}{2 \pi} \ln \left(\frac{r_2}{r_1}\right)

  3. Substitute the values:

    • μ0=4π×107 T m/A\mu_0 = 4\pi \times 10^{-7} \text{ T m/A}
    • I=5 AI = 5 \text{ A}
    • v=2 m/sv = 2 \text{ m/s}
    • r1=1 mr_1 = 1 \text{ m}
    • r2=4 mr_2 = 4 \text{ m}

    E=(4π×107)×5×22πln(41)\mathcal{E} = \frac{(4\pi \times 10^{-7}) \times 5 \times 2}{2 \pi} \ln \left(\frac{4}{1}\right) E=(2×107×5×2)ln(4)\mathcal{E} = (2 \times 10^{-7} \times 5 \times 2) \ln(4) E=(20×107)ln(4)\mathcal{E} = (20 \times 10^{-7}) \ln(4) E=2×106ln(4) V\mathcal{E} = 2 \times 10^{-6} \ln(4) \text{ V}

    Using ln(4)=2ln(2)2×0.693=1.386\ln(4) = 2 \ln(2) \approx 2 \times 0.693 = 1.386: E=2×106×1.386\mathcal{E} = 2 \times 10^{-6} \times 1.386 E=2.772×106 V\mathcal{E} = 2.772 \times 10^{-6} \text{ V}

    Polarity:
    Using the right-hand rule for the force on positive charge carriers F=q(v×B)\vec{F} = q(\vec{v} \times \vec{B}):
    v\vec{v} is upwards. B\vec{B} is into the page. v×B\vec{v} \times \vec{B} points to the left (towards the long wire).
    This means positive charges are pushed towards point A, making A at a higher potential than B.

The final answer is 2×106ln(4) V2 \times 10^{-6} \ln(4) \text{ V}.

Explanation of the solution:
The magnetic field due to the long current-carrying wire is non-uniform, varying inversely with distance. The motional EMF is calculated by integrating B(r)vdrB(r)v dr over the length of the wire AB. The integral leads to E=μ0Iv2πln(r2r1)\mathcal{E} = \frac{\mu_0 I v}{2 \pi} \ln \left(\frac{r_2}{r_1}\right). Substituting the given values I=5 AI=5 \text{ A}, v=2 m/sv=2 \text{ m/s}, r1=1 mr_1=1 \text{ m}, and r2=4 mr_2=4 \text{ m} yields the induced EMF.