Solveeit Logo

Question

Question: While cleaning his flat a physics research student knocks over a bucket containing 5.4 litre of wate...

While cleaning his flat a physics research student knocks over a bucket containing 5.4 litre of water, which then forms itself into one continuous puddle. The contact angle between floor and water is 6060^\circ. we can assume that the area of water-air interface and water-floor interface to be almost same and it is AA.

The area (exposed to air) of the puddle formed is A. Take g=10 m/s2g = 10 \ m/s^2, density of water = 103 kg/m310^3 \ kg/m^3 and surface tension of water = 72.9×103 N/m72.9 \times 10^{-3} \ N/m. The value of AA is

Answer

2

Explanation

Solution

The volume of water is V=5.4 litre=5.4×103 m3V = 5.4 \text{ litre} = 5.4 \times 10^{-3} \ m^3. The density of water is ρ=103 kg/m3\rho = 10^3 \ kg/m^3.

Let the area of the puddle be AA. We assume the puddle forms a thin film of uniform thickness hh. The volume of the puddle is V=A×hV = A \times h, so h=V/Ah = V/A.

The potential energy of the water is the sum of gravitational potential energy and surface energy. The gravitational potential energy, taking the floor as the reference level, is Ug=mg(h/2)U_g = m g (h/2). Since the thickness is assumed uniform, the center of mass is at h/2h/2. Ug=ρVg(V2A)=ρgV22AU_g = \rho V g \left(\frac{V}{2A}\right) = \frac{\rho g V^2}{2A}.

The surface energy arises from the interfaces. We consider the water-air interface (area AA) and the water-floor interface (area AA). When the puddle forms, these interfaces replace the floor-air interface over area AA. The change in surface energy compared to the bare floor is ΔUs=γwaA+γwfAγfaA\Delta U_s = \gamma_{wa} A + \gamma_{wf} A - \gamma_{fa} A, where γwa\gamma_{wa} is the surface tension of the water-air interface (given as γ\gamma), γwf\gamma_{wf} is the surface tension of the water-floor interface, and γfa\gamma_{fa} is the surface tension of the floor-air interface. According to Young's equation, at the contact line, the surface tensions are related by γfa=γwf+γcosθ\gamma_{fa} = \gamma_{wf} + \gamma \cos \theta, where θ\theta is the contact angle. So, γwfγfa=γcosθ\gamma_{wf} - \gamma_{fa} = -\gamma \cos \theta. The change in surface energy is ΔUs=γA+(γwfγfa)A=γAγAcosθ=γA(1cosθ)\Delta U_s = \gamma A + (\gamma_{wf} - \gamma_{fa}) A = \gamma A - \gamma A \cos \theta = \gamma A (1 - \cos \theta).

The total potential energy of the puddle is U=Ug+ΔUs=ρgV22A+γA(1cosθ)U = U_g + \Delta U_s = \frac{\rho g V^2}{2A} + \gamma A (1 - \cos \theta). The puddle spreads to minimize this total energy. We find the minimum by differentiating UU with respect to AA and setting the derivative to zero. dUdA=ddA(ρgV22A)+ddA(γA(1cosθ))=0\frac{dU}{dA} = \frac{d}{dA}\left(\frac{\rho g V^2}{2A}\right) + \frac{d}{dA}\left(\gamma A (1 - \cos \theta)\right) = 0. ρgV22A2+γ(1cosθ)=0-\frac{\rho g V^2}{2A^2} + \gamma (1 - \cos \theta) = 0.

Solving for AA: ρgV22A2=γ(1cosθ)\frac{\rho g V^2}{2A^2} = \gamma (1 - \cos \theta). A2=ρgV22γ(1cosθ)A^2 = \frac{\rho g V^2}{2 \gamma (1 - \cos \theta)}. A=ρgV22γ(1cosθ)=Vρg2γ(1cosθ)A = \sqrt{\frac{\rho g V^2}{2 \gamma (1 - \cos \theta)}} = V \sqrt{\frac{\rho g}{2 \gamma (1 - \cos \theta)}}.

Now, substitute the given values: V=5.4×103 m3V = 5.4 \times 10^{-3} \ m^3. ρ=103 kg/m3\rho = 10^3 \ kg/m^3. g=10 m/s2g = 10 \ m/s^2. γ=72.9×103 N/m\gamma = 72.9 \times 10^{-3} \ N/m. θ=60\theta = 60^\circ, so cosθ=cos60=0.5\cos \theta = \cos 60^\circ = 0.5. 1cosθ=10.5=0.51 - \cos \theta = 1 - 0.5 = 0.5.

A=(5.4×103)103×102×(72.9×103)×0.5A = (5.4 \times 10^{-3}) \sqrt{\frac{10^3 \times 10}{2 \times (72.9 \times 10^{-3}) \times 0.5}}. A=(5.4×103)10472.9×103A = (5.4 \times 10^{-3}) \sqrt{\frac{10^4}{72.9 \times 10^{-3}}}. A=(5.4×103)104×10372.9A = (5.4 \times 10^{-3}) \sqrt{\frac{10^4 \times 10^3}{72.9}}. A=(5.4×103)10772.9A = (5.4 \times 10^{-3}) \sqrt{\frac{10^7}{72.9}}. To simplify 10772.9\sqrt{\frac{10^7}{72.9}}, we can write 10772.9=107729/10=108729\frac{10^7}{72.9} = \frac{10^7}{729/10} = \frac{10^8}{729}. 729=272729 = 27^2. So, 108729=108729=10427\sqrt{\frac{10^8}{729}} = \frac{\sqrt{10^8}}{\sqrt{729}} = \frac{10^4}{27}.

A=(5.4×103)×10427A = (5.4 \times 10^{-3}) \times \frac{10^4}{27}. A=5.4×103×10427=5.4×1027=5427=2A = \frac{5.4 \times 10^{-3} \times 10^4}{27} = \frac{5.4 \times 10}{27} = \frac{54}{27} = 2.

The area of the puddle is 2 m22 \ m^2.