Solveeit Logo

Question

Mathematics Question on geometric progression

Which term of the following sequences:

(a) 2 ,222\sqrt{2} , 4 ,.... is 128 ?

(b) 3\sqrt{3}, 3, 333\sqrt{3},... is 729 ?

(c) 13,19,127\frac{1}{3},\frac{1}{9},\frac{1}{27} ,.... is 119683\frac{1}{19683} ?

Answer

(a) The given sequence is 2 , 222\sqrt{2} , 4,....

Here, a = 2 and r = 222\frac{2\sqrt 2}{2}= 2\sqrt{2}

Let the n th term of the given sequence be 128

an = ar n - 1

⇒ (2)(2)(\sqrt{2}) n - 1 = 128

⇒ (2)(2)n - 12\frac{1}{2} = (2)7)^7

⇒ (2)n - 12\frac{1}{2} + 1 = (2)7)^7

⇒ ∴ n - 12\frac{1}{2} + 1 = 7

⇒ n - 12\frac{1}{2} = 6

⇒ n - 1 = 12

⇒ n = 13

Thus, the 13th term of the given sequence is 128.

(b) The given sequence is 3\sqrt{3} , 3 , 333\sqrt{3} ,...

Here, a = 3\sqrt{3} and r = 33\frac{3}{\sqrt{3}}= 3\sqrt{3}

Let the n th term of the given sequence be 729.

an = arn - 1

∴ arn - 1 = 729

⇒ ( 3\sqrt{3})( 3\sqrt{3}n - 1) = 729

⇒ (3) 12\frac{1}{2}** (3)n - 12\frac{1}{2} = (3)**6^6

⇒ (3) 12\frac{1}{2}** + n - 12\frac{1}{2} = (3**)6)^6

12\frac{1}{2} + n - 12\frac{1}{2}= 6

⇒ n = 12

Thus, the 12th term of the given sequence is 729.


(c) The given sequence is 13,19,112\frac{1}{3},\frac{1}{9},\frac{1}{12},…..

**Here, a = 13\frac{1}{3} and r = 19\frac{1}{9} ÷ **13=13\frac{1}{3}=\frac{1}{3}

**Let the n th term of the given sequence be **119683\frac{1}{19683}

**an = arn **1^-1

**∴ arn 1^-1 = **119683\frac{1}{19683}

**⇒ **(13)(13)(\frac{1}{3})(\frac{1}{3})**n 6^6 = **119683\frac{1}{19683}

(13)(\frac{1}{3})**n = **(13)9(\frac{1}{3})^9

⇒ n = 9

**Thus, the 9th term of the given sequence is **119683\frac{1}{19683}