Solveeit Logo

Question

Question: Which term of the following A.P \[3,\text{ }15,\text{ }27,\text{ }39,\text{ }\ldots \] will be ...

Which term of the following A.P
3, 15, 27, 39, 3,\text{ }15,\text{ }27,\text{ }39,\text{ }\ldots
will be 132 more than the 54th term of the A.P.

Explanation

Solution

Hint: Use the formula for the nth term of A.P an=a+(n1)d{{a}_{n}}=a+(n-1)d. Where ‘a’ is the first term and ‘d’ is the common difference to find the 54th term. Then use an=a+(n1)d{{a}_{n}}=a+(n-1)dagain to find the term which is 132 more than the 54th term. Alternatively, you can use the property that if mth term is p more than nth term then m=n+pdm=n+\dfrac{p}{d}.

Complete step-by-step solution -

We know that an=a+(n1)d (i){{a}_{n}}=a+(n-1)d\text{ (i)}
In the given A.P we have a = 3
d = 15-3 = 12
Put n = 54, a = 3 and d = 12 in equation (i), we get
a54=3+(541)×12 a54=3+53×12 a54=3+636 a54=639 \begin{aligned} & {{a}_{54}}=3+\left( 54-1 \right)\times 12 \\\ & \Rightarrow {{a}_{54}}=3+53\times 12 \\\ & \Rightarrow {{a}_{54}}=3+636 \\\ & \Rightarrow {{a}_{54}}=639 \\\ \end{aligned}
Let the kth term of A.P be 132 more than 54th term
Hence ak=a54+132{{a}_{k}}={{a}_{54}}+132
a+(k1)d=639+132\Rightarrow a+\left( k-1 \right)d=639+132
Put a = 3 and d = 12
3+(k1)12=771\Rightarrow 3+\left( k-1 \right)12=771
Subtracting 3 from both sides we get
3+(k1)123=7713 (k1)12=768 \begin{aligned} & \Rightarrow 3+\left( k-1 \right)12-3=771-3 \\\ & \Rightarrow \left( k-1 \right)12=768 \\\ \end{aligned}
Dividing both sides by 12, we get
(k1)1212=76812 k1=64 \begin{aligned} & \Rightarrow \dfrac{\left( k-1 \right)12}{12}=\dfrac{768}{12} \\\ & \Rightarrow k-1=64 \\\ \end{aligned}
Transposing 1 to RHS we get
k = 64+1 = 65
Hence the 65th term is 132 more than 54th term
Note: [a] Alternatively, let mth term is p more than nth term
Then we have
am=an+p a+(m1)d=a+(n1)d+p \begin{aligned} & {{a}_{m}}={{a}_{n}}+p \\\ & \Rightarrow a+\left( m-1 \right)d=a+\left( n-1 \right)d+p \\\ \end{aligned}
Subtracting a from both sides we get
a+(m1)da=a+(n1)d+pa (m1)d=(n1)d+p \begin{aligned} & \Rightarrow a+\left( m-1 \right)d-a=a+\left( n-1 \right)d+p-a \\\ & \Rightarrow \left( m-1 \right)d=\left( n-1 \right)d+p \\\ \end{aligned}
Dividing by d on both sides we get
(m1)dd=(n1)d+pd m1=(n1)d+pd \begin{aligned} & \dfrac{\left( m-1 \right)d}{d}=\dfrac{\left( n-1 \right)d+p}{d} \\\ & \Rightarrow m-1=\dfrac{\left( n-1 \right)d+p}{d} \\\ \end{aligned}
Transposing 1 to RHS we get
m=(n1)d+pd+1 m=(n1)dd+pd+1 m=n1+pd+1 m=n+pd \begin{aligned} & \Rightarrow m=\dfrac{\left( n-1 \right)d+p}{d}+1 \\\ & \Rightarrow m=\dfrac{\left( n-1 \right)d}{d}+\dfrac{p}{d}+1 \\\ & \Rightarrow m=n-1+\dfrac{p}{d}+1 \\\ & \Rightarrow m=n+\dfrac{p}{d} \\\ \end{aligned}
Put n = 54, p = 132 and d = 12 we get
m=54+13212m=54+\dfrac{132}{12}
m = 54+11 = 65

[b] The value of the first term was not needed in solving the question through the second method.
[c] Some of the most important formulae in A.P are:
[1] an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d
[2] Sn=n2(2a+(n1)d){{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)
[3] Sn=n2[2l(n1)d]{{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right] where l is the last term.
[4] Sn=n2(a+l){{S}_{n}}=\dfrac{n}{2}\left( a+l \right)
[5] an=SnSn1{{a}_{n}}={{S}_{n}}-{{S}_{n-1}}