Question
Question: Which relations are correct for an aqueous dilute solution of \(\mathrm{K}_{3} \mathrm{PO}_{4}\) if ...
Which relations are correct for an aqueous dilute solution of K3PO4 if its degree of dissociation is α?
This question has multiple correct options.
A) P∘ΔP=1000 Molality ×18×(1+3α)
B) P∘ΔP=RT×1000πcbs×18×(1+3α)
C) P∘ΔP=Kf×1000ΔTfobs ×18
D) Mw of K3PO4=Mwobs×(1+3α)
Solution
We know that an aqueous dilute solution of any salt is formed in water and the molar mass of water is 18gmol−1. It is also known that the dissociation of electrolyte takes place in their aqueous solution. Therefore, we can say that the value of Mw1is18gmol−1.
Complete step by step answer:
We can write the dissociation reaction of K3PO4 as follows.
K3PO4→3K++PO43−
We can say that the value of Van't Hoff factor in terms of degree of dissociation i=1+3α
We can also express the Van't Hoff factor as follows.
i=MobsMc=(1+3α)
Therefore, we can conclude from the above equation that the molecular weight of K3PO4 =Mobs×(1+3α).
We know that the expression for the relative lowering in the vapor pressure is expressed as follows.
P∘ΔP=n1n2
=W1×1000n2×Mw1×1000
=1000Molality×Mw1
On simplification we can say express the above expression for an electrolyte as follows.
P∘ΔP=1000Molality×Mw1×(1+3α)
We know that the expression for the observed osmotic pressure is the one which is shown as follows.
πobs=CRT(1+3α)
∴P∘ΔP=RTπcbs×100018
We know that the expression for the observed depression in freezing point is the one which is shown as follows.
ΔTfobs =Kt× molality ×(1+3α)
∴P∘ΔP=KfΔTfobs ×10018
Hence, we can conclude that the correct options are A, C and D.
Note: It is known that the value of Van't Hoff factor is always larger than one then the experimental molecular weight will always be less than the theoretical value calculated from the formula of any of the colligative properties. We can also interpret the Van't Hoff factor as the ratio of the number of particles in solution to the number which are obtained to be the assumed zero ionization.