Solveeit Logo

Question

Question: Which one of the following statements is true? A. If \(\underset{x\to c}{\mathop{\lim }}\,f\left( ...

Which one of the following statements is true?
A. If limxcf(x).g(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)and limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)exist, then limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exists.
B. If limxcf(x).g(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)exists, then limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)and limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exist.
C. If limxc(f(x)+g(x))\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)and limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right) exist, then limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exist.
D. Iflimxc(f(x)+g(x))\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)exists, then limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)and limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exist.

Explanation

Solution

Hint: Use counter examples to verify the given statements. Try to make examples related with the functions modulus, greatest integer, logarithm etc. to get accurate results.

Complete step-by-step answer:
Here, we have to find a true statement from the given options. So, we will discuss from option A to D with examples. As we need to use counter examples for the given statements.
Option A. is given as
If limxcf(x).g(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)and limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)exist, then limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exists.
Here one counter example of the given statement is given as
f(x)=x g(x)=[x] \begin{aligned} & f\left( x \right)=x \\\ & g\left( x \right)=[x] \\\ \end{aligned}
So, f(x).g(x)=x[x]f\left( x \right).g\left( x \right)=x[x].
And let c=0, and check for the existence of given functions.
As, f(x)=xf\left( x \right)=x is existing at x0x\to 0 and will givelimx0x=0\underset{x\to 0}{\mathop{\lim }}\,x=0.
So, limx0f(x)\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right) exists.
We havef(x).g(x)=x[x]f\left( x \right).g\left( x \right)=x[x].
Apply limit x0x\to 0tox[x]x[x].
For LHL,
limx0x[x]\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,x[x]
Here [x] will give value ‘-1’as x is lying between (-1,0).
So, expression will become
limx0x(1)=0\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,x\left( -1 \right)=0( As x0x\to {{0}^{-}}).
For RHL,
limx0+x[x]\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x[x]
Here, [x] will give value ‘0’ as x is lying between (0,1).
Hence , we get limx0+x(0)=0(0)=0\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x(0)=0(0)=0
So, LHL=RHL for f(x)g(x)f\left( x \right)g\left( x \right)at x0x\to 0.
Hence, limx0f(x).g(x)\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)exists.
Now, we have g(x)=[x]g\left( x \right)=[x].
For LHL, we get limx0[x]\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,[x]
So, LHL=-1
For RHL, we get
limx0+[x]\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,[x].
So, RHL=0.
Hence, limx0g(x)\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right) does not exist.
So, option A. is incorrect as here limxcf(x).g(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)exists and limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)exist but limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right) doesn’t exist.
Option B. is given as
If limxcf(x).g(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)exists, then limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)and limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exist.
We can take some counter example as explained above where
f(x)=x,g(x)=[x] f(x)g(x)=x[x] \begin{aligned} & f\left( x \right)=x,g\left( x \right)=[x] \\\ & f\left( x \right)g\left( x \right)=x[x] \\\ \end{aligned}
So, option B. is incorrect as well.
Here, option D is given as Iflimxc(f(x)+g(x))\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)exists, then limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)and limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)exist.
We can take counter example for this option as
f\left( x \right)=\left\\{ \begin{aligned} & +1,x\ge 0 \\\ & -1,x<0 \\\ \end{aligned} \right.
g\left( x \right)=\left\\{ \begin{aligned} & -1,x\ge 0 \\\ & +1,x<0 \\\ \end{aligned} \right.
where f(x)f\left( x \right)and g(x)g\left( x \right)will not exist at x0x\to 0as LHL and RHL will have different values at x0x\to {{0}^{-}}and x0+x\to {{0}^{+}} respectively.
Now, f(x)+g(x)f\left( x \right)+g\left( x \right)is given as
f\left( x \right)+g\left( x \right)=\left\\{ \begin{aligned} & 0,x\ge 0 \\\ & 0,x<0 \\\ \end{aligned} \right.
or
f(x)+g(x)f\left( x \right)+g\left( x \right)= 0
Which exists at x0x\to 0as x0x\to {{0}^{-}}and x0+x\to {{0}^{+}}will give the same value 0.
Hence, option D. is also incorrect aslimxc(f(x)+g(x))\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)exists, but limxcf(x)\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)and limxcg(x)\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)is not existing in the above example.
Therefore option C. is the correct answer from the given statements.

Note: One cannot relatef(x)f\left( x \right), g(x)g\left( x \right)and f(x)+g(x)f\left( x \right)+g\left( x \right)orf(x).g(x)f\left( x \right).g\left( x \right)for any limit xcx\to cdirectly.
So, taking counterexamples to these kinds of questions is the only way to find the correct answer.
One can get some examples for corrections of option A, B, C, D but statements used here are general statements. So, try to use modulus, fractional, greatest integer functions etc. to verify these kinds of statements.