Solveeit Logo

Question

Mathematics Question on Relations and functions

Which one of the following relations on RR is an equivalence relation?

A

aR1ba=baR_{1}b \Leftrightarrow \left|a\right|=\left|b\right|

B

aR2babaR_{2}b \Leftrightarrow a \ge b

C

aR3baaR_{3}b \Leftrightarrow a divides bb

D

aR4ba<baR_{4}b \Leftrightarrow a < b

Answer

aR1ba=baR_{1}b \Leftrightarrow \left|a\right|=\left|b\right|

Explanation

Solution

(i)(i) Reflexive : aRa \in R, aR1aaR_1a a=a \Rightarrow |a| = |a| (ii)(ii) Symmetric : aa, bRb \in R aR1ba=baR_{1}b \Rightarrow \left|a\right| = \left|b\right| b=a \Rightarrow \left|b\right| = \left|a\right| bR1a \Rightarrow bR_{1}a (iii)(iii) Transitive : aa, bb, cRc \in R aR1ba=baR_{1}b \Rightarrow \left|a\right|=\left|b\right|, bR1cbR_{1}c b=c \Rightarrow \left|b\right|=\left|c\right|. So, a=c\left|a\right|=\left|c\right| aR1c \Rightarrow aR_{1}c R1\Rightarrow R_{1} is an equivalence relation on RR.