Solveeit Logo

Question

Question: Which one of the following is homogeneous function? This question has multiple correct options ...

Which one of the following is homogeneous function?
This question has multiple correct options
A f(x,y)=xyx2+y2f\left( x,y \right)=\dfrac{x-y}{{{x}^{2}}+{{y}^{2}}}
B f(x,y)=x13.y23tan1xyf\left( x,y \right)={{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\dfrac{x}{y}
C f(x,y)=x(lnx2+y2lny)+yexyf\left( x,y \right)=x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}}
D f(x,y)=x[ln2x2+y2xln(x+y)]+y2tanx+2y3xyf\left( x,y \right)=x\left[ \ln \dfrac{2{{x}^{2}}+{{y}^{2}}}{x}-\ln \left( x+y \right) \right]+{{y}^{2}}\tan \dfrac{x+2y}{3x-y}

Explanation

Solution

We solve this question by using the condition of homogeneity to find out the homogeneous functions from the above given options. A homogeneous function is a function that has the scaling property which means that if each of its terms are multiplied by a factor, then the entire function is multiplied by a power of this factor. The condition used for checking homogeneous functions is given by f(hx,hy)=hmf(x,y),f\left( hx,hy \right)={{h}^{m}}f\left( x,y \right), where mR.m\in R.

Complete step by step answer:
In order to solve this question, let us use the condition of homogeneity to check if the given functions are homogeneous. The condition used is represented as f(hx,hy)=hmf(x,y),f\left( hx,hy \right)={{h}^{m}}f\left( x,y \right), where mR.m\in R. Here, it means that if every individual variable term of the function is scaled up or multiplied by a factor h, then the entire function can be represented as a multiple of this factor h or a power of it hm{{h}^{m}} such that m is a real number.
Let us solve the first part,
f(x,y)=xyx2+y2\Rightarrow f\left( x,y \right)=\dfrac{x-y}{{{x}^{2}}+{{y}^{2}}}
Let us replace x by hx and y by hy,
f(hx,hy)=hxhy(hx)2+(hy)2\Rightarrow f\left( hx,hy \right)=\dfrac{hx-hy}{{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}
Now we take the h common out from the numerator and square the individual terms in the denominator,
f(hx,hy)=h(xy)h2x2+h2y2\Rightarrow f\left( hx,hy \right)=\dfrac{h\left( x-y \right)}{{{h}^{2}}{{x}^{2}}+{{h}^{2}}{{y}^{2}}}
Taking the h2{{h}^{2}} common out from the denominator,
f(hx,hy)=h(xy)h2(x2+y2)\Rightarrow f\left( hx,hy \right)=\dfrac{h\left( x-y \right)}{{{h}^{2}}\left( {{x}^{2}}+{{y}^{2}} \right)}
Substituting for the original function and the h terms cancel giving us a h1{{h}^{-1}} in the numerator,
f(hx,hy)=h1f(x,y)\Rightarrow f\left( hx,hy \right)={{h}^{-1}}f\left( x,y \right)
Hence, option A is a homogeneous function.
Let us solve the second part now,
f(x,y)=x13.y23tan1xy\Rightarrow f\left( x,y \right)={{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\dfrac{x}{y}
Let us replace x by hx and y by hy,
f(hx,hy)=(hx)13.(hy)23tan1(hxhy)\Rightarrow f\left( hx,hy \right)={{\left( hx \right)}^{\dfrac{1}{3}}}.{{\left( hy \right)}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{hx}{hy} \right)
Now we take the power of the individual terms and then cancelling the h from the numerator and denominator term of the tan function,
f(hx,hy)=h13x13.h23y23tan1(xy)\Rightarrow f\left( hx,hy \right)={{h}^{\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}.{{h}^{-\dfrac{2}{3}}}{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)
Taking the h terms common out,
f(hx,hy)=h1323x13.y23tan1(xy)\Rightarrow f\left( hx,hy \right)={{h}^{\dfrac{1}{3}-\dfrac{2}{3}}}{{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)
Simplifying the power for h,
f(hx,hy)=h13x13.y23tan1(xy)\Rightarrow f\left( hx,hy \right)={{h}^{-\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)
Substituting for the original function,
f(hx,hy)=h13f(x,y)\Rightarrow f\left( hx,hy \right)={{h}^{-\dfrac{1}{3}}}f\left( x,y \right)
Hence, option B is a homogeneous function too.
Let us solve the third part now,
f(x,y)=x(lnx2+y2lny)+yexy\Rightarrow f\left( x,y \right)=x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}}
Let us replace x by hx and y by hy,
f(hx,hy)=hx(ln(hx)2+(hy)2lnhy)+hyehxhy\Rightarrow f\left( hx,hy \right)=hx\left( \ln \sqrt{{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}-\ln hy \right)+hy{{e}^{\dfrac{hx}{hy}}}
Now we take the h2{{h}^{2}} term common from inside the root and it comes out of the root as h. Then, we cancel the h in the numerator and denominator in the power of the exponential term.
f(hx,hy)=hx(lnhx2+y2lnhy)+hyexy\Rightarrow f\left( hx,hy \right)=hx\left( \ln h\sqrt{{{x}^{2}}+{{y}^{2}}}-\ln hy \right)+hy{{e}^{\dfrac{x}{y}}}
We know that lnalnb=lnab.\ln a-\ln b=\ln \dfrac{a}{b}. Using this in the above equation,
f(hx,hy)=hx(lnhx2+y2hy)+hyexy\Rightarrow f\left( hx,hy \right)=hx\left( \ln \dfrac{h\sqrt{{{x}^{2}}+{{y}^{2}}}}{hy} \right)+hy{{e}^{\dfrac{x}{y}}}
Cancelling the h terms from the numerator and denominator of the ln term,
f(hx,hy)=hx(lnx2+y2y)+hyexy\Rightarrow f\left( hx,hy \right)=hx\left( \ln \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)+hy{{e}^{\dfrac{x}{y}}}
Taking h common out from the first and second terms,
f(hx,hy)=h(x(lnx2+y2y)+yexy)\Rightarrow f\left( hx,hy \right)=h\left( x\left( \ln \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)+y{{e}^{\dfrac{x}{y}}} \right)
Using lnalnb=lnab,\ln a-\ln b=\ln \dfrac{a}{b}, and splitting the ln terms,
f(hx,hy)=h(x(lnx2+y2lny)+yexy)\Rightarrow f\left( hx,hy \right)=h\left( x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}} \right)
Substituting the original function,
f(hx,hy)=hf(x,y)\Rightarrow f\left( hx,hy \right)=hf\left( x,y \right)
Hence, option C is a homogeneous function too.
Next, we consider option D.
f(x,y)=x[ln2x2+y2xln(x+y)]+y2tanx+2y3xy\Rightarrow f\left( x,y \right)=x\left[ \ln \dfrac{2{{x}^{2}}+{{y}^{2}}}{x}-\ln \left( x+y \right) \right]+{{y}^{2}}\tan \dfrac{x+2y}{3x-y}
Let us replace x by hx and y by hy,
f(hx,hy)=hx[ln2(hx)2+(hy)2hxln(hx+hy)]+(hy)2tanhx+2hy3hxhy\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{2{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}{hx}-\ln \left( hx+hy \right) \right]+{{\left( hy \right)}^{2}}\tan \dfrac{hx+2hy}{3hx-hy}
Taking the h2{{h}^{2}} term common out from the numerator of the first ln function and cancelling with the one h in the denominator,
f(hx,hy)=hx[lnh(2x2+y2)xln(hx+hy)]+(hy)2tanhx+2hy3hxhy\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{h\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( hx+hy \right) \right]+{{\left( hy \right)}^{2}}\tan \dfrac{hx+2hy}{3hx-hy}
Taking the h terms common out from the numerator and denominator of the tan function, and using the formula lnalnb=lnab\ln a-\ln b=\ln \dfrac{a}{b} for the two ln functions,
f(hx,hy)=hx[lnh(2x2+y2)xh(x+y)]+(hy)2tanh(x+2y)h(3xy)\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{h\left( 2{{x}^{2}}+{{y}^{2}} \right)}{xh\left( x+y \right)} \right]+{{\left( hy \right)}^{2}}\tan \dfrac{h\left( x+2y \right)}{h\left( 3x-y \right)}
Cancelling the h terms from the numerator and denominator of the tan function and similarly cancelling the h terms from the numerator and denominator of the ln function,
f(hx,hy)=hx[ln(2x2+y2)x(x+y)]+(hy)2tan(x+2y)(3xy)\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x\left( x+y \right)} \right]+{{\left( hy \right)}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)}
Splitting the ln terms using lnalnb=lnab,\ln a-\ln b=\ln \dfrac{a}{b}, and squaring the h in the second term,
f(hx,hy)=hx[ln(2x2+y2)xln(x+y)]+h2y2tan(x+2y)(3xy)\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( x+y \right) \right]+{{h}^{2}}{{y}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)}
Taking the h term common out from both the terms,
f(hx,hy)=h(x[ln(2x2+y2)xln(x+y)]+hy2tan(x+2y)(3xy))\Rightarrow f\left( hx,hy \right)=h\left( x\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( x+y \right) \right]+h{{y}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)} \right)
We cannot replace the original function here since there is an additional h term in the second term. Therefore, option D is not a homogeneous function.

Hence, options A, B and C are homogeneous functions.

Note: We need to know the concept of homogeneity to solve such questions. Care must be taken while cancelling the terms of h and we need to use the formula lnalnb=lnab,\ln a-\ln b=\ln \dfrac{a}{b}, for further simplification of the terms. We need to note that it will not be a homogeneous function if we are not able to replace the original function back in the scaled equation.