Solveeit Logo

Question

Question: Which one of the following is greater: \((1)\)\[5.0\] \[\left( 2 \right)\]\[0.5\] \[\left( 3...

Which one of the following is greater:
(1)(1)$$5.0 \left( 2 \right)$$$$0.5 \left( 3 \right) 0.005 \left( 4 \right) 0.05$$

Explanation

Solution

Hint : We have to find which of the following is greater . We solve this by decimal concept and by making the denominator equal for each value by removing the decimal points and simultaneously multiplying the numerator by for each decimal value removed . Then comparing the numerator we find the greater number .

Complete step-by-step answer :
Given : 44decimal values5.0$$$$,{\text{ }}0.5{\text{ }},{\text{ }}0.005{\text{ }},{\text{ }}0.05
Let us consider that
a$$$$ = {\text{ }}5.0
b$$$$ = {\text{ }}0.5
c$$$$ = {\text{ }}0.005
d$$$$ = {\text{ }}0.05
Now , removing the decimal of a{\text{ }},$$$$b{\text{ }}, c,$$$$d and obtaining fractional values
To convert the decimal values to fractional values, we can count the number of values after the decimal point. The number of values upto a non-zero number after the decimal point is equal to the number of zeros to be added in the denominator of the fractional value
Then ,
a{\text{ }} = $$$$\;\left( {\dfrac{{50}}{{10}}} \right)
b =b{\text{ }} = (510)\left( {\dfrac{5}{{10}}} \right)
c =c{\text{ }} = (51000)\left( {\dfrac{5}{{1000}}} \right)
d =d{\text{ }} = (5100)\left( {\dfrac{5}{{100}}} \right)
As we have 10001000 in the denominator of cc we will make value of denominator = 1000 = {\text{ }}1000 in a , ba{\text{ }},{\text{ }}b and dd
Now , taking L.C.M. and making the denominators of a{\text{ }},$$$$b{\text{ }}, c , dc{\text{ }},{\text{ }}d equal , we get
a =a{\text{ }} = (5010 ) × (100100 )\left( {\dfrac{{50}}{{10}}{\text{ }}} \right){\text{ }} \times {\text{ }}\left( {\dfrac{{100}}{{100}}{\text{ }}} \right)
Then ,
a =a{\text{ }} = (50001000)\left( {\dfrac{{5000}}{{1000}}} \right)
Similarly for bband dd
b =b{\text{ }} = (510) × (100100)\left( {\dfrac{5}{{10}}} \right){\text{ }} \times {\text{ }}\left( {\dfrac{{100}}{{100}}} \right)
Then ,
b =b{\text{ }} = (5001000)\left( {\dfrac{{500}}{{1000}}} \right)
d =d{\text{ }} = (5100) × (1010)\left( {\dfrac{5}{{100}}} \right){\text{ }} \times {\text{ }}\left( {\dfrac{{10}}{{10}}} \right)
Then ,
d =d{\text{ }} = (501000)\left( {\dfrac{{50}}{{1000}}} \right)
Now comparing the values ,
( As the denominator for each value is equal the greatest number can be calculated by the number which has the greatest value in the numerator )
The numerators of a , b , ca{\text{ }},{\text{ }}b{\text{ }},{\text{ }}c and dd are 5000{\text{ }},{\text{ }}500$$$$,{\text{ }}5{\text{ }},{\text{ }}50 respectively .
( As 5000{\text{ }} > $$$$500{\text{ }} > $$$$50{\text{ }} > {\text{ }}5)
a{\text{ }} > {\text{ }}b$$$$ > {\text{ }}d > c > {\text{ }}c
Hence , aa has the greatest value
Thus , the correct option is (1)\left( 1 \right)
So, the correct answer is “Option 1”.

Note: Any number can be represented in the form of a decimal number . Also , any decimal number can be represented in the form of fraction by just removing the decimal points , decimal points are always reduced from the left side to the right of the decimal point
For an example 5.005{\text{ }} = $$$$\left( {\dfrac{{50.05}}{{10}}} \right){\text{ }} = \left( {\dfrac{{500.5}}{{100}}} \right){\text{ }} = $$$$\left( {\dfrac{{5005}}{{1000}}} \right)