Solveeit Logo

Question

Mathematics Question on mathematical reasoning

Which one of the following is a tautology ?

A

(P(PQ))Q(P ∧ (P \to Q)) \to Q

B

P(PQ)P ∨ (P ∧ Q)

C

Q(P(PQ))Q \to (P ∧ (P \to Q))

D

P(PQ)P ∧ (P ∨ Q)

Answer

(P(PQ))Q(P ∧ (P \to Q)) \to Q

Explanation

Solution

(1)P(PQ)=P\left(1\right)\,P\,\wedge \left(P\,\vee\,Q\right)=P
(2)P(PQ)P\left(2\right)\,P\,\vee \left(P\,\wedge\,Q\right)\equiv P
(3)Q(P(PQ))\left(3\right)\,Q \rightarrow \left(P\,\wedge\left(P \rightarrow Q\right)\right)
Q(P(PQ))Q(PQ)\equiv Q \rightarrow \left(P\,\wedge\left(\sim P\,\vee\,Q\right)\right)\equiv Q \rightarrow \left(P\,\wedge\,Q\right)
(Q)(PQ)(P(Q))\equiv\left(\sim Q\right)\vee\left(P\,\wedge\,Q\right)\equiv\left(P\,\vee\left(\sim Q\right)\right)
(4)(P(PQ))Q\left(4\right)\,\left(P\,\wedge \left(P \rightarrow Q\right)\right) \rightarrow Q
(P(PQ))Q(PQ)Q\equiv\left(P\,\wedge \left(\sim P\,\vee\,Q\right)\right) \rightarrow Q\equiv \left(P\,\wedge\,Q \right) \rightarrow Q
((P)(Q))Q(P)tt\equiv\left(\left(\sim P\right)\vee\left(\sim Q\right)\right)\vee\,Q\equiv\left(\sim P\right)\vee\,t\equiv t

So, the correct option is (A): (P(PQ))Q(P ∧ (P \to Q)) \to Q